Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2+y2+2xy=4x+4y
=>(x2+2xy+y2)+3x2+y2-4x-4y=0
=> (x+y)2+3\(\left(x^2-\dfrac{4}{3}x\right)+\left(y^2-4y\right)=0\)
=> (x+y)2+3\(\left(x^2-2.\dfrac{4}{6}+\dfrac{16}{36}-\dfrac{16}{36}\right)+\left(y^2-4y+4\right)-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2-\dfrac{4}{3}+\left(y-2\right)^2-4=0\)
=> (x+y)2+3\(\left(x-\dfrac{4}{6}\right)^2+\left(y-2\right)^2=\dfrac{16}{3}\)
\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2