Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức f(x) = ax3 + bx2 + c
g(x) = ax3 + bx2 - x + c - 5
Ta có f(x) chia hết cho x + 2 nên khi thay x = - 2 thì f(x) = 0
<=> - 8a + 4b + c = 0 (1)
g(x) chia hết cho x2 - 1 hay chia hết cho x + 1 và x - 1
Từ đó ta có
- a + b + c - 4 = 0 và a + b + c - 6 = 0
Từ đây ta có hệ phương trình bật nhất 3 ẩn.
Bạn tự giải phần còn lại nhé
Từ hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+\cdots+1\right)\to x^n-1\vdots x-1\).
Ta có \(x^{3n+1}+x^{2n}+1=x\left(x^{3n}-1\right)+\left(x^2+x+1\right)+\left(x^{2n}-x^2\right)\) . Từ trên ta suy ra \(x^{3n}-1\) chia hết cho đa thức \(x^3-1,\) do đó \(x^{3n}-1\) chia hết cho đa thức \(x^2+x+1.\) Vậy \(x^{3n+1}+x^{2n}+1\) chia hết cho đa thức \(x^2+x+1\) khi và chỉ khi \(x^{2n}-x^2\) chia hết cho đa thức \(x^2+x+1.\)
Ta có \(x^{2n}-x^2=x^2\left(x^{2n-2}-1\right)\). Ta viết \(2n-2=3k+r,0\le r\le2.\)
Khi đó \(x^{2n-2}-1=x^{3k+r}-1=x^r\left(x^{3k}-1\right)+\left(x^r-1\right)\), thành thử \(x^r-1\vdots x^2+x+1\to r=0.\)
Vậy \(2n-2\vdots3\to n-1\vdots3\), hay \(n=3k+1,\) với \(k\) là số tự nhiên.
Đáp số: \(n=3k+1,\) với \(k\) là số tự nhiên tùy ý.
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(-1\right)=-1+5\\f\left(1\right)=1+5\end{cases}\Leftrightarrow\hept{\begin{cases}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b+c=5\\4b+c=8\end{cases}\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}.}}}..\)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Ta có: 3x+2:x2+5
=>(3x+2)2:x2+5
=>3x2+2(3x)(2)+22:x2+5
=>(3x2+15)+12x-9:x2+5
Vì 3x2+15:x2+5
=>12x-9:x2+5
Vì 3x+2:x2+5=>4(3x+2):x2+5
=>12+8:x2+5
Vì 12x-9 và 12x+8 cùng: x2+5
=>(12x+8)-(12x-9):x2+5
=>17:x2+5
=>x2+5\(\in\)Ư(17)={1;17;-1;-17}
=>x2\(\in\){-4;13;-6;-21}
Mà ko có STN nào mà bình phương bằng -4;13;-6;-21
Vậy x\(\in\)rỗng