Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài quáng đường là s(km)
Thời gian xe thứ nhất đi hết quãng đường là:
\(t_1=\dfrac{s}{30}\left(giờ\right)\)
Thời gian xe thứ 2 đi hết quãng đường là:
\(t_2=\dfrac{\dfrac{s}{3}}{30}+\dfrac{\dfrac{2s}{3}}{40}\left(giờ\right)\)
Xe thứ 2 đến sớm hơn xe thứ nhất 5('\(5'=\dfrac{1}{12}\left(giờ\right)\)) nên:
\(t_1-t_2=\dfrac{s}{30}-\left(\dfrac{\dfrac{s}{3}}{30}+\dfrac{\dfrac{2s}{3}}{40}\right)=\dfrac{1}{12}\Rightarrow s=15km\)
Thời gian xe thứ nhất đi hết quãng đường AB là:
\(t_1=\dfrac{s}{30}\left(giờ\right)=\dfrac{1}{2}\left(giờ\right)=30'\)
Thời gian xe thứ hai đi hết quãng đường AB là:
\(t_2=25'\)
Còn phần tìm độ lớn v2 mik chưa học nên thôi nhá
Vận tốc trung bình của xe thứ nhất :
\(v_{tb1}=\dfrac{s}{\dfrac{s}{2}\left(\dfrac{1}{v_1}+\dfrac{1}{v_2}\right)}=\dfrac{1}{\dfrac{1}{2}\left(\dfrac{1}{30}+\dfrac{1}{60}\right)}=40\left(\dfrac{km}{h}\right)\)
Vận tốc trung bình của xe thứ hai :
\(v_{tb2}=\dfrac{t\left(\dfrac{v_1}{3}+\dfrac{2\cdot v_2}{3}\right)}{t}=\dfrac{1\left(\dfrac{30}{3}+\dfrac{2\cdot60}{3}\right)}{1}=50\left(\dfrac{km}{h}\right)\)
2/ Thời gian 2 xe đi hết quãng đường AB hơn kém nhau 0,6h(36 phút)
\(t_1-t_2=0,6\)
\(\Rightarrow\dfrac{s}{v_{tb1}}-\dfrac{s}{v_{tb2}}=0,6\)
\(\Rightarrow\dfrac{s}{40}-\dfrac{s}{50}=0,6\Leftrightarrow50s-40s=1200\Leftrightarrow10s=1200\Leftrightarrow s=120\left(km\right)\)
Vậy chiều dài quãng đường AB là 120 km
Nếu cảm thấy mình giải tắt bạn ko hiểu thì ib hỏi mình nha. Để mình trình bày rõ ra tí. Chúc bạn ngày tốt lành!
Gọi chiều dài quãng đường AB là S (đơn vị km)
Thời gian xe thứ nhất đi hết quãng đường này là\(t_1=\frac{S}{30}\) giờ
Thời gian xe thứ hai đi hết quãng đường này là t2 = \(\frac{S}{\frac{3}{30}}+\frac{2S}{\frac{3}{40}}\) giờ
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút = \(\frac{1}{12}\)) nên : \(t_1-t_2=\frac{S}{30}-\left(\frac{s}{\frac{3}{30}}+\frac{2s}{\frac{3}{40}}\right)=\frac{1}{12}\)
Giải ra ta được quãng đường là 15 km
=> S = 15 (km)
Thời gian xe thứ nhất đi hết AB là : \(t_1=\frac{S}{30}=\frac{1}{2}\left(gi\text{ờ}\right)=30ph\text{út}\)
Thời gian xe thứ hai đi :\(t_2=30-5=25\) phút
Gọi chiều dài quãng đường AB là s (km)
Thời gian xe thứ nhất đi hết quãng đường này là t1 = s/30 (giờ);
Thời gian xe thứ hai đi hết quãng đường này là t2 = (s/3)/30 + (2s/3)/40 (giờ).
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút = 1/12 giờ) nên : t1 - t2 = s/30 - ( (s/3)/30 + (2s/3)/40) = 1/12
=> s = 15 (km)
Thời gian xe thứ nhất đi hết AB là : t1 = s/30 (giờ) = 1/2 (giờ) = 30 (phút).
Thời gian xe thứ hai đi : t2 = 25 (phút).
a, theo bài ra
nửa quãng đường đầu xe thứ nhất đi trong \(t1=\dfrac{\dfrac{1}{2}S}{v1}=\dfrac{\dfrac{1}{2}S}{40}=\dfrac{S}{80}h\)
nửa quãng đường sau xe thứ nhất đi trong \(t2=\dfrac{\dfrac{1}{2}S}{v2}=\dfrac{\dfrac{1}{2}S}{60}=\dfrac{S}{120}\left(h\right)\)
\(=>Vtb1=\dfrac{S}{t1+t2}=\dfrac{S}{\dfrac{S}{80}+\dfrac{S}{120}}=\dfrac{S}{\dfrac{200S}{9600}}=\dfrac{9600}{200}=48km/h\)
* đối với xe 2
quãng đường xe 2 đi trong nửa tgian đầu:\(S1=\dfrac{1}{2}t.40=20t\left(km\right)\)
quãng đường xe 2 đi trong nửa tgian sau: \(S2=\dfrac{1}{2}t.60=30t\left(km\right)\)
\(=>S=vtb2.t\)\(=30t+20t=50t\)
\(=>vtb2=50km/h\)
b, do \(vtb1< vtb2\left(48< 50\right)\) do đó xe thứ 2 về B trước xe thứ nhất
đổi \(20s=\dfrac{1}{180}h\)
theo bài ra xe thứ nhất về đích sau xe thứ 2 là 20s\(=\dfrac{1}{180}h\)
\(=>t3-t4=\dfrac{1}{180}\)
\(< =>\dfrac{S}{vtb1}-\dfrac{S}{vtb2}=\dfrac{1}{180}< =>\dfrac{S}{48}-\dfrac{S}{50}=\dfrac{1}{180}\)
\(< =>\dfrac{2S}{2400}=\dfrac{1}{180}=>360S=2400=>S=\dfrac{2400}{360}=\dfrac{20}{3}km\)
Gọi chiều dài quãng đường AB là s (km)
Thời gian xe thứ nhất đi hết quãng đường này là t1 = s/30 (giờ);
Thời gian xe thứ hai đi hết quãng đường này là t2 = (s/3)/30 + (2s/3)/40 (giờ).
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút = 1/12 giờ) nên : t1 - t2 = s/30 - ( (s/3)/30 + (2s/3)/40) = 1/12
=> s = 15 (km)
Thời gian xe thứ nhất đi hết AB là : t1 = s/30 (giờ) = 1/2 (giờ) = 30 (phút).
Thời gian xe thứ hai đi : t2 = 25 (phút).
a đối với xe thứ nhất:, \(=>t1=\dfrac{\dfrac{1}{2}S}{v1}=\dfrac{\dfrac{1}{2}S}{40}=\dfrac{S}{80}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{2}S}{v2}=\dfrac{\dfrac{1}{2}S}{60}=\dfrac{S}{120}\left(h\right)\)
\(=>vtb1=\dfrac{\dfrac{1}{2}S+\dfrac{1}{2}S}{t1+t2}=\dfrac{S}{\dfrac{S}{80}+\dfrac{S}{120}}=\dfrac{S}{\dfrac{200S}{9600}}=48km/h\)
vậy vận tốc trung bình xe thứ nhất là 48km/h
* với xe thứ hai \(=>S1=\dfrac{1}{2}t.v1=\dfrac{1}{2}t.40=20t\left(km\right)\)
\(=>S2=\dfrac{1}{2}t.v2=\dfrac{1}{2}t.60=30t\left(km\right)\)
\(=>S1+S2=S\) \(=vtb2.t\)
\(=>50t=vtb2.t=>vtb2=\dfrac{50t}{t}=50km/h\)
b, vì \(vtb1< vtb2\left(48< 50\right)\)
nên xe thứ hai đến B trước xe thứ nhất
c, khi xe 2 tới Bthì xe nhất còn cách B
\(240-S3=240-[240-\left(\dfrac{240}{80}+\dfrac{240}{240}.60\right)]=63km\)
a,
\(=>t1=\dfrac{\dfrac{1}{3}S}{60}=\dfrac{S}{180}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{2}{3}S}{45}=\dfrac{2S}{135}\left(h\right)\)
\(=>vtb2=\dfrac{S}{\dfrac{S}{180}+\dfrac{2S}{135}}=\dfrac{S}{\dfrac{495S}{24300}}=\dfrac{24300}{495}=49km/h< v1\)
=> xe 1 đến B trước
b,đổi \(t=20'=\dfrac{1}{3}h\)
\(=>S\left(AB\right)=vtb2.t=49.\dfrac{1}{3}=\dfrac{49}{3}km\)
\(=>t1=\dfrac{S\left(AB\right)}{v1}=\dfrac{\dfrac{49}{3}}{50}\approx0,33h\)
TT:
v1=50km/h
v2=60km/h
v3=45km/h
giải
a/ Tg xe hai đi hết 1/3 quãng đg đầu: t1=\(\dfrac{\dfrac{1}{3}AB}{v2}\)=\(\dfrac{AB}{3v2}\)(h)
Tg xe hai đi hết quãng đường còn lại: t2=\(\dfrac{AB-\dfrac{1}{3}AB}{v3}\)=\(\dfrac{2AB}{3v3}\)(h)
Vận tốc TB xe 2: Vtb=\(\dfrac{AB}{t1+t2}\)=\(\dfrac{AB}{\dfrac{AB}{3v2}+\dfrac{2AB}{3v3}}\)=\(\dfrac{1}{\dfrac{1}{3.60}+\dfrac{2}{3.45}}\)\(\approx\)49,1(km/h)
v1>v2 (50>49,1) \(\Rightarrow\)Xe 1 đi về B trước
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
Gọi chiều dài quãng đường AB là s (km)
Thời gian xe thứ nhất đi hết quãng đường này là t1 = s/30 (giờ);
Thời gian xe thứ hai đi hết quãng đường này là t2 = (s/3)/30 + (2s/3)/40 (giờ).
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút = 1/12 giờ) nên : t1 - t2 = s/30 - ( (s/3)/30 + (2s/3)/40) = 1/12
=> s = 15 (km)
Thời gian xe thứ nhất đi hết AB là : t1 = s/30 (giờ) = 1/2 (giờ) = 30 (phút).
Thời gian xe thứ hai đi : t2 = 25 (phút).
Gọi chiều dài quãng đường AB là s (km)
Thời gian xe thứ nhất đi hết quãng đường này là t1 = s/30 (giờ);
Thời gian xe thứ hai đi hết quãng đường này là t2 = (s/3)/30 + (2s/3)/40 (giờ).
Xe thứ hai đến sớm hơn xe thứ nhất 5 phút (5 phút = 1/12 giờ) nên : t1 - t2 = s/30 - ( (s/3)/30 + (2s/3)/40) = 1/12
=> s = 15 (km)
Thời gian xe thứ nhất đi hết AB là : t1 = s/30 (giờ) = 1/2 (giờ) = 30 (phút).
Thời gian xe thứ hai đi : t2 = 25 (phút).