Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADC có:
\(\widehat{ACB}=\widehat{ADC}+\widehat{DAC}\)(tính chất góc ngoài)
\(\Rightarrow\widehat{DAC}=\widehat{ACB}-\widehat{ACB}=60^0-30^0=30^0\)
\(\Rightarrow\widehat{DAC}=\widehat{ADC}=30^0\)
=> Tam giác ADC cân tại C
=> AC=DC=20m
Áp dụng tslg trong tam giác ABC vuông tại B:
\(AB=sinC.AC=sin60^0.20=10\sqrt{3}\left(m\right)\)
\(BC=cosC.AC=cos60^0.20=10\left(m\right)\)
Ta có:
cosA = AB/AC
⇒ AB = AC . cosA
= 392.cos40⁰
≈ 300 (m)
Vậy khoảng cách giữa hai bờ sông là 300 m
Đề bài sai rồi em (hoặc là thiếu dữ liệu)
Không thể tính được khoảng cách giữa 2 hòn đảo chỉ với các số liệu này.
Giả sử người đó đứng ở vị trí A, hòn đảo thứ nhất ở vị trí B với \(\widehat{BAx}=40^0\) và \(AB=115\) nên điểm B cố định
Khi đó, nếu ta dựng tia Az sao cho \(\widehat{xAz}=60^0\) thì hòn đảo thứ 2 nằm ở 1 vị trí bất kì trên tia Az đều thỏa mãn bài toán
Nghĩa là khoảng cách giữa 2 hòn đảo thay đổi và không thể tính được. Em có thể đặt hòn đảo thứ 2 ở C hay D hay 1 điểm nào đó tùy thích. Rõ ràng là các đoạn BC và BD khác nhau về độ dài nhưng đều thỏa mãn yêu cầu bài toán.