K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

sách nâng cao và phát triển toán 8 tập 2 bài 326

23 tháng 2 2015

Câu 1: \(P=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{x^2+x+1}{3\left(x^2+x+1\right)}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)

\(\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\), với mọi x. Dấu = xảy ra khi x- 1 =0 <=> x =1

Vậy Min P = 1/3 <=> x = 1

Tìm Max : \(P=\frac{3x^2+3x+3-2\left(x^2+2x+1\right)}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\),với mọi x, 

Dấu = xảy ra <=> x +1 = 0 <=> x = - 1

Vậy max P = 3 <=> x = -1

30 tháng 1 2016

mình ko biết

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)