Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a: \(F\left(x\right)=x^3+2x^2+3x+4\)
\(G\left(x\right)=x^3-x^2+3x+1\)
b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)
\(F\left(x\right)-G\left(x\right)=3x^2+3\)
Trừ biểu thức 2 cho biểu thức thứ 3 ta được:
[g(x)+h(x)]-[f(x)+g(x)] = 2x2-2x+1-x2+4x-2
<=> h(x)-f(x) = x2+2x-1
Lại có: h(x)+f(x) = x2+2x+1
=> 2.f(x) = x2+2x+1-x2-2x+1 = 2
=> f(x) = 1
Đáp số: f(x) = 1
\(#HaimeeOkk\)
\(a)\)
\(f ( x ) + g ( x ) = ( x ^3 − 2 x + 1 ) + ( 2 x ^2 − x ^3 + x − 3 ) \)
\(f ( x ) + g ( x ) = x ^3 − 2 x + 1 + 2 x ^2 − x ^3 + x − 3 \)
\(f ( x ) + g ( x ) = x ^3 − x ^3 + 2 x ^2 − 2 x + x + 1 − 3 \)
\(f ( x ) + g ( x ) = 2 x ^2 − x − 2\)
\(f ( x ) − g ( x ) = ( x ^3 − 2 x + 1 ) − ( 2 x ^2 − x ^3 + x − 3 ) \)
\(f ( x ) − g ( x ) =x^3- 2 x + 1 −2x^2+x^3-x+3\)
\(f ( x ) − g ( x ) = x ^3 + x ^3 − 2 x ^2 − 2 x − x + 1 + 3 \)
\(f ( x ) − g ( x ) = 2 x ^3 − 2 x ^2 − 3 x + 4\)
\(-----------------------------\)
\(b)\)
Thay \(x=-1\) vào \(f ( x ) + g ( x )\)
\(f ( x ) + g ( x ) = 2 x ^2 − x − 2\)
\(⇒ 2 ( − 1 ) ^2 − ( − 1 ) − 2 = 1\)
Thay \(x=-2\) vào \(f ( x ) + g ( x )\)
\(f ( x ) + g ( x ) = 2 x ^2 − x − 2\)
\(⇒ 2 ( − 2 ) ^2 − ( − 2 ) − 2 = 8\)
a) Tính
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2+2\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1+2\right)\)
\(=2x+4\)
\(f\left(x\right)+g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)+\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1+x^3+x-1+2x^2+2\)
\(=\left(x^3+x^3\right)+\left(-2x^2+2x^2\right)+\left(3x+x\right)+\left(1-1+2\right)\)
\(=2x^3+4x+2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)-\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1-2x^2-2\)
\(=\left(x^3-x^3\right)+\left(-2x^2-2x^2\right)+\left(3x-x\right)+\left(1+1-2\right)\)
\(=-4x^2+2x\)
b) Tìm x
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(2x+4=0\)
\(2x=0-4=-4\)
\(x=\frac{-4}{2}=-2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=0\)
\(-4x^2+2x=0\)
\(-4x^2=-2x\)
\(x^2=\frac{-1}{2}x\)
\(\Leftrightarrow x^2+\frac{1}{2}x=0\)
\(x\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow x=0\)
Hoặc \(x+\frac{1}{2}=0\Leftrightarrow x=0-\frac{1}{2}=\frac{-1}{2}\)
`a,`
`M(x) = f(x) - g(x)`
`M(x)= (x^3-2x^2+2x+1)-(x^3+x+1)`
`M(x)= x^3-2x^2+2x+1-x^3-x-1`
`M(x)= (x^3-x^3)-2x^2+(2x-x)+(1-1)`
`M(x)= -2x^2+x`
`----`
`N(x)= g(x)+h(x)`
`N(x)= (x^3+x+1)+(2x^2-1)`
`N(x)= x^3+x+1+2x^2-1`
`N(x)=x^3+x+2x^2+(1-1)`
`N(x)=x^3+x+2x^2`
`b,`
`M(x) = -2x^2+x`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Không có hệ số tự do.
`N(x)=x^3+x+2x^2`
Bậc của đa thức: `3`
Hệ số cao nhất: `1`
Không có hệ số tự do.
`c,`
`M(-1)=-2*(-1)^2+(-1)`
`= -2*1+(-1)`
`=-2+(-1)=-3`
`N(2)=2^3+2+2*2^2`
`N(2)= 8+2+2*4`
`N(2)=8+2+8=10+8=18`
`M(2)=-2*2^2+2`
`M(2)=-2*4+2`
`M(2)=-8+2=-6`
`N(-3)=(-3)^3+(-3)+2*(-3)^2`
`N(-3)= -27+(-3)+2*9`
`N(-3)= (-27)+(-3)+18 = (-30)+18 = -12`
a: M(x)=F(x)-G(x)
\(=x^3-2x^2+2x+1-x^3-x-1=-2x^2+x\)
N(x)=G(x)+H(x)
=x^3+x+1+2x^2-1
=x^3+2x^2+x
b: Bậc, hệ số cao nhất, hệ số tự do của M lần lượt là 2;-2;0
Bậc, hệ số cao nhất, hệ số tự do của N lần lượt là 3;1;0
c: M(x)=-2x^2+x
M(-1)=-2*(-1)^2+(-1)=-2-1=-3
M(2)=-2*2^2+2=-8+2=-6
N(x)=x(x+1)^2
N(2)=2(2+1)^2=18
N(-3)=-3(-3+1)^2=-3*4=-12
Có \(f\left(x\right)=3x-2x+1\) và \(g\left(x\right)=2x2-3x+x-3\)
a) \(f\left(x\right)+g\left(x\right)=\left(3x-2x+1\right)+\left(2x2-3x+x-3\right)\)
\(f\left(x\right)+g\left(x\right)=\left(x+1\right)+\left(4x-3x+x-3\right)=\left(x+1\right)+\left(2x-3\right)\)
\(f\left(x\right)+g\left(x\right)=x+1+2x-3=\left(2x+x\right)\left(3-1\right)=3x-2\)
\(f\left(x\right)-g\left(x\right)=\left(3x-2x+1\right)-\left(2x2-3x+x-3\right)\)
\(f\left(x\right)-g\left(x\right)=\left(x+1\right)-\left(4x-3x+x-3\right)=\left(x+1\right)-\left(2x-3\right)\)
\(f\left(x\right)-g\left(x\right)=x+1-2x+3=\left(1+3\right)-\left(2x-x\right)=4-x\)
b) Có \(f\left(-1\right)=3\left(-1\right)-2\left(-1\right)+1=\left(-3\right)-\left(-2\right)+1=0\)
Và \(g\left(-1\right)=2.2\left(-1\right)-3\left(-1\right)+\left(-1\right)-3=\left(-4\right)-\left(-3\right)-1-3=-5\)
\(x=-1\Leftrightarrow\left[f\left(x\right)+g\left(x\right)\right]=0+\left(-5\right)=0-5=-5\)
Có \(f\left(-2\right)=3\left(-2\right)-2\left(-2\right)+1=\left(-6\right)-\left(-4\right)+1=-1\)
\(g\left(-2\right)=2.2\left(-2\right)-3\left(-2\right)+\left(-2\right)-3=\left(-8\right)-\left(-6\right)-2-3=-3\)
\(x=-2\Leftrightarrow\left[f\left(x\right)+g\left(x\right)\right]=\left(-1\right)+\left(-3\right)=-4\)
Cho f(x) = x3 - 2x + 1
g(x) = 2x2 - x3 + x - 3
a) f(x) + g(x) =3x -2
;f(x) - g(x) = 6x
b) Tính f(x) + g(x) tại x = - 1; x = - 2
`a,f(x)-g(x)+h(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`
`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`
`=0+0+3x+1`
`=3x+1`
`b,f(x)-g(x)+h(x)=0`
`=>3x+1=0`
`=>x=-1/3`
a) h(x) = f(x) + g(x)
f(x) + g(x) = (x3 - 2x + 1) + (2x2 - x3 + x - 4)
= x3 - 2x + 1 + 2x2 - x3 + x - 4
= (x3 - x3) + 2x2 + (2x + x) + (1 - 4)
= 2x2 + 3x - 3
=> h(x) = 2x3 + 3x - 3
b) q(x) = f(x) - g(x)
f(x) - g(x) = (x3 - 2x + 1) - (2x2 - x3 + x - 4)
= x3 - 2x + 1 - 2x2 + x3 - x + 4
= (x3 + x3) + (-2x - x) + (1 + 4) - 2x2
= 2x3 - 3x + 5 - 2x2
=> q(x) = 2x3 - 3x + 5 - 2x2
c) x = -1
x3 - 2x + 1 + 2x2 - x3 + x - 4
= (-1)3 - 2.(-1) + 1 + 2.(-1)2 - (-1)3 + (-1) - 4
= (-1) - (-2) + 1 + 2 - (-1) + (-1) - 4
= 0
=> f(x) + g(x) tại x = -1 là 0
x = -2
x3 - 2x + 1 + 2x2 - x3 + x - 4
= (-2)3 - 2.(-3) + 1 + 2.(-2)2 - (-2)3 + (-2) - 4
= (-8) - (-6) + 1 + 4 - (-8) + (-2) - 4
= 5
=> f(x) + g(x) tại x = -2 là 5