Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
Câu 14)
\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\)
\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\)
Câu 15
\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)
\(=>9x+2=60:3\)
\(=>9x+2=20\)
\(=>9x=20-2\)
\(=>9x=18\)
\(=>x=18:2=2\)
Vậy số cần tìm là 2
CHÚC BẠN HỌC TỐT............
( 9x + 2 ) . 3 = 60
( 9x + 2 ) = 60 : 3
9x + 2 = 20
9x = 20 - 2
9x =18
x = 18 : 9
x = 2
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
Giải:
Ta có: \(\dfrac{y-5}{7-y}=\dfrac{2}{-3}\)
\(\Rightarrow\left(y-5\right).\left(-3\right)=2\left(7-y\right)\)
\(\Rightarrow-3y+15=14-2y\)
\(\Rightarrow-3y+2y=-15+14\)
\(\Rightarrow-1y=-1\)
Vậy y=1
Ta có:y-5/7-y=2/-3
=>(y-5).(-3)=(7-y).2
=>-3y+15=14-2y
=>-3y+2y=14-15
=>-y=-1
=>y=1
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Theo bài ra ta có:
\(\left(x+y\right)=3\left(x-y\right)=\dfrac{2x}{y}\)
Xét 2 vế đầu là x+y =3(x-y ); Ta có:
=> x+y = 3x - 3y
=> (x+y) - (3x - 3y) =0 hay 2x -4y =0;
=>4y -2x=0 => 2(2y - x) =0;
Vậy 2y - x=0 => 2y=x ..Thay vào ta được biểu thức mới:
\(\left(2y+y\right)=3\left(2y-y\right)=\dfrac{4y}{y}=4\)
=> 3y = 4 \(=>y=\dfrac{4}{3};x=\dfrac{4}{3}.2=\dfrac{8}{3}\)
Vậy x\(=\dfrac{8}{3}\); y\(=\dfrac{4}{3}\)
CHÚC BẠN HỌC TỐT .....
ko có chuyện chia mà được thương và số dư bằng nhau đâu bạn ạ
Gọi số cần tìm là \(a,b\)
\(\dfrac{a}{b}=\dfrac{1}{4}\) và \(a.b=16\)Ta có: \(a=\dfrac{16}{b}\)⇒\(a=\dfrac{16}{\dfrac{b}{b}}\)=\(\dfrac{1}{4}\)⇒\(a=\dfrac{16}{b^2}=\dfrac{1}{4}\)⇒\(b^2=64\)⇒\(b=8\) Ta có: \(a.8=16\)\(a=16:8\)\(a=2\)Bạn giải thích kĩ hơn đi