K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

lớp mấy 

Đặt \(a=x^2\left(a>=0\right)\)

pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)

\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

a: Để pt vô nghiệm thì -4m+5<0

hay m>5/4

b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0

hay m<5/4

c: Để pt có 4 nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)

9 tháng 12 2016

\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)

\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)

\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)

\(=m^2-4m+4-m^2+3m\)

\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)

\(\Rightarrow4-m>0\Rightarrow m< 4\)

Vậy với m=4 (*) có 2 nghiệm phân biệt

 

 

9 tháng 12 2016

Nhưng ở pt b=1 thì làm sao dùng được delta phẩy ạ

18 tháng 2 2016

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)

<=>5-4m<0

<=>m>5/4

b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm

Để PT(2) có duy nhất 1 nghiệm thì:

\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)

c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:

Để PT(2) có 2 nghiệm phân biệt thì:

\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

Mem đây ko rành lắm sai bỏ qua

NM
5 tháng 9 2021

ta có phương trình như sau :

\(x^2+4x+m+3=0\text{ có hai nghiệm âm phân biệt}\Leftrightarrow\)\(\hept{\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-m-3>0\\-4< 0\\m+3>0\end{cases}}\Leftrightarrow1>m>-3\)

vậy có 3 giá trị nguyên của m là 0,-1, -2