Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2.\left(x+\frac{2}{5}\right)+1\frac{1}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)+\frac{5}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)=\frac{-7}{10}\)
\(x+\frac{2}{5}=\frac{-7}{20}\)
\(x=\frac{-13}{20}\)
Vậy \(x=\frac{-13}{20}\)
b)\(x-1\frac{1}{8}-\frac{2}{3}x-\frac{5}{6}x=75\%\)
\(\left(x-\frac{2}{3}x-\frac{5}{6}x\right)-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x=\frac{15}{8}\)
\(x=\frac{-15}{4}\)
Vậy \(x=\frac{-15}{4}\)
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
\(2^x+2^{x+2}=32.\left(2^2+1\right)\)
\(\Rightarrow2^x+2^{x+2}=32.5\)
\(\Rightarrow2^x+2^{x+2}=160\)
\(\Rightarrow2^x\left(1+4\right)=160\)
\(\Rightarrow2^x.5=160\)
\(\Rightarrow2^x=160:5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5
\(\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\left(x+\dfrac{1}{5}\right)^2=\left(\dfrac{3}{5}\right)^2\)
➩ \(x+\dfrac{1}{5}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}-\dfrac{1}{5}\)
\(x=\dfrac{2}{5}\)
(1/2)ˣ = 1/8
(1/2)ˣ = (1/2)³
x = 3