Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, từ đề ta suy ra được : 3 điểm K; C;J trùng nhau.
từ t/c hbh => AK=BD
=> \(\dfrac{IB}{ID}=\dfrac{IA}{IK}\)
Áp dụng đl ta-lét vào tam giác ADK có :\(\dfrac{IJ}{IA}=\dfrac{AD}{DK}\)
Áp dụng đl ta-lét vào tam giác CDK có :\(\dfrac{IB}{ID}=\dfrac{BK}{DK}\)
mà AD và BK = nhau => \(\dfrac{IB}{ID}=\dfrac{IJ}{IA}\)
b/ từ đề bài ta đã có : 3 điểm gồm K;C;J trùng nhau tại một điểm
=> IJ.IK=IC.IC=\(IC^2\)
dựa vào t/c hbh 2 đường chéo cắt nhau tại trug điểm mỗi đường sẽ có:
IA=IC
từ trên suy ra : \(IA^2=IC^2\)
hay nói cách khác:\(IA^2=IJ.IK\) ( đpcm)
a: Xét ΔAMB có MD là phân giác
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có ME là phân giác
nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC
b: M là trung điểm của BC
nên \(MB=MC=\dfrac{BC}{2}=\dfrac{a}{2}\)
Xét ΔAMB có MD là phân giác
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}\)
=>\(\dfrac{AD}{DB}=\dfrac{m}{\dfrac{a}{2}}=m:\dfrac{a}{2}=\dfrac{2m}{a}\)
=>\(\dfrac{DB}{AD}=\dfrac{a}{2m}\)
=>\(\dfrac{DB+AD}{AD}=\dfrac{a+2m}{2m}\)
=>\(\dfrac{AB}{AD}=\dfrac{a+2m}{2m}\)
=>\(\dfrac{AD}{AB}=\dfrac{2m}{a+2m}\)
Xét ΔABC có DE//BC
nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)
=>\(\dfrac{DE}{a}=\dfrac{2m}{a+2m}\)
=>\(DE=\dfrac{2am}{a+2m}\)
a: Xét ΔAMB có MD là phân giác của góc AMB
nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có ME là phân giác của góc AMC
nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)
nên DE//BC
b: Gọi I là giao điểm của AM và DE
Xét ΔABM có DI//BM
nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMC có IE//MC
nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)
mà BM=MC
nên DI=IE
=>I là trung điểm của DE
Xét ΔAMB có MD là phân giác
nên \(\dfrac{AM}{MB}=\dfrac{AD}{DB}\)
=>\(\dfrac{DB}{AD}=\dfrac{MB}{AM}\)
=>\(\dfrac{DB+AD}{AD}=\dfrac{MB+AM}{AM}\)
=>\(\dfrac{AB}{AD}=\dfrac{\dfrac{a}{2}+m}{m}\)
=>\(\dfrac{AD}{AB}=\dfrac{m}{\dfrac{a}{2}+m}=m:\dfrac{a+m}{2}=\dfrac{2m}{a+m}\)
XétΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{a}=\dfrac{2m}{a+m}\)
=>\(DE=\dfrac{2ma}{a+m}\)
d: Để DE là đường trung bình của ΔABC thì D,E lần lượt là trung điểm của AB,AC
Xét ΔMAB có
MD là đường trung tuyến
MD là đường phân giác
Do đó: ΔMAB cân tại M
=>MA=MB
Xét ΔMAC có
ME là đường phân giác
ME là đường trung tuyến
Do đó: ΔMAC cân tại M
=>MA=MC
mà MA=MB
nên MB=MC
=>M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
1, tam giác ABC cân tại A (gt)
AM là đường trung tuyến
=> AM đồng thời là phân giác của góc BAC(đl)
=> góc CAM = góc BAM (đn)
có góc CAM + góc BAM = góc BAC
có CAM = 30 (gt)
=> góc BAC = 60
tam giác ABC cân tại A (gT) => góc ACB = (180 - BAC) : 2 (tính chất)
=> góc ACB = 60
=> tam giác ABC đều
=> AC = BC (đn)
a: Xét ΔAIB và ΔKID có
\(\widehat{AIB}=\widehat{KID}\)
\(\widehat{IAB}=\widehat{IKD}\)
Do đó: ΔAIB\(\sim\)ΔKID
Suy ra: IA/IK=IB/ID