Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: x-1 khác 0 và x+1 khác 0
<=> x khác 1 và x khác -1
b) ĐK: x-2 khác 0
<=> x khác 2
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{x-b-a-c}{a+c}+\dfrac{x-c-a-b}{a+b}=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a+b+c\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\end{matrix}\right.\)
Xét \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)ĐK: \(\left\{{}\begin{matrix}a\ne-b\\b\ne-c\\c\ne-a\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)+\left(c+a\right)\left(b+c\right)+\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+3\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2+ab+bc+ca=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+bc+ca=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab-\left(a+b\right)b-\left(a+b\right)a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab+a^2+b^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)
Vậy với x=a+b+c hoặc a=b=c=0 thì pt thỏa mãn.
điều kiện : \(\begin{cases}x\ne1\\x\ne2\end{cases}\)
phương trình: \(\Leftrightarrow\left(x+m\right)\left(x-2\right)=\left(x+3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+\left(m-2\right)x-2m=x^2+2x-3\)
\(\Leftrightarrow\left(m-4\right)x=2m-3\)
+ m = 4 phương trình vô nghiệm
+ m\(\ne\) 4 phương trình \(\Leftrightarrow x=\frac{2m-3}{m-4}\)
do điều kiện : \(\begin{cases}x\ne1\\x\ne2\end{cases}\)nên \(\begin{cases}\frac{2m-3}{m+1}\ne1\\\frac{2m-3}{m-4}\ne2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}2m-3\ne m-4\\2m-3\ne2m-8\end{cases}\)
\(\Leftrightarrow m\ne-1\)
vậy: + \(m\in\left\{4;-1\right\}\): phương trình vô nghiệm
+ \(m\in R\text{ /}\left\{4;-1\right\}\) :phương trình có nghiệm duy nhất \(x=\frac{2m-3}{m-4}\)