Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:`x>=2`
Ta có:
`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`
`=8/(\sqrt{x+6}+sqrt{x-2})`
`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`
`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`
`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`
`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`
`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`
`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`
Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`
`=>sqrt{x+6}-1>=2sqrt2-1>0`
`<=>sqrt{x-2}=1`
`<=>x=3(tm)`
Vậy `S={3}`
\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-\left(x+5\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)
a)
\(\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)
\(\sqrt{x+3}+2\cdot2\sqrt{x+3}-\frac{1}{3}\cdot3\sqrt{x+3}=8\)
\(\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)
\(4\sqrt{x+3}=8\)
\(\sqrt{x+3}=2\)
\(\orbr{\begin{cases}2\ge0\left(llđ\right)\\x+3=2^2\end{cases}}\)
\(x+3=4\)
\(x=1\)
b)
\(\orbr{\begin{cases}x^2+10x+25\ge0\\4x^2-4x+1=x^2+10x+25\end{cases}}\)
\(\orbr{\begin{cases}\left(x+5\right)^2\ge0\left(lld\right)\\3x^2-6x-24=0\end{cases}}\)
\(\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)
Tham khảo:
Giải phương trình: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\) - Hoc24
\(ĐK:x\ge2\\ PT\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=6\\ \Leftrightarrow3\sqrt{x-2}=6\\ \Leftrightarrow\sqrt{x-2}=2\\ \Leftrightarrow x-2=4\\ \Leftrightarrow x=6\left(tm\right)\)
a) đặt \(\sqrt{x+6}=a\ge0\)
\(\sqrt{x-2}=b\ge0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Đến đây tự làm nhé
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
a/
Đặt \(\sqrt{x^2-4x+5}=t>0\Rightarrow x^2-4x=t^2-5\)
Pt trở thành: \(t^2-5+2=2t\Leftrightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4x+5}=3\Leftrightarrow x^2-4x-4=0\) (bấm máy)
b/ ĐKXĐ: \(-4\le x\le6\)
\(-x^2+2x+24+\sqrt{-x^2+2x+24}-12=0\)
Đặt \(\sqrt{-x^2+2x+24}=t\ge0\)
\(\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+2x+24}=4\Rightarrow x^2-2x-8=0\) (bấm máy)
Đặt \(x^2-4x=t\)
Phương trình \(\Leftrightarrow\frac{t+12}{t+6}=t+8\Leftrightarrow t+12=\left(t+6\right)\left(t+8\right)\)
\(\Leftrightarrow t+12=t^2+14t+48\Leftrightarrow t^2+13t+36=0\Leftrightarrow\left(t+4\right)\left(t+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=-9\end{cases}}}\)
Với \(t=-4\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Với \(t=-9\Rightarrow x^2-4x+9=0\)vô nghiệm vì \(\Delta=16-36=-20< 0\)
Vậy phương trình có nghiệm x=2
Mơn bạn nhìu nha