K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)

Đặt \(\sqrt{x^2-5x-6}=a\ge0\)

\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)

b/ ĐKXĐ: ...

\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)

Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)

\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)

c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)

Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)

\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)

NV
23 tháng 10 2019

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)

e/ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)

Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)

\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)

\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)

f/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)

\(\frac{1}{a}+1+a=3a^2\)

\(\Leftrightarrow3a^3-a^2-a-1=0\)

\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)

\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Bài 1:

\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)

=>-2x+3m-4+20x-25=0

=>18x+3m-29=0

Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)

=>4-48m+64<=0

=>-48m+68<=0

=>-48m<=-68

=>m>=17/12

5 tháng 3 2017

\(\sqrt{2x-1}+x^2-3x+1=0\) (ĐKXĐ: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow\sqrt{2x-1}=-x^2+3x-1\)

\(\Leftrightarrow\left(\sqrt{2x-1}\right)^2=\left(-x^2+3x-1\right)^2=\left(x^2+1-3x\right)^2\)

\(\Leftrightarrow2x-1=x^4+1+9x^2+2\left(x^2-3x-x^2.3x\right)\)

\(\Leftrightarrow2x-1=x^4+9x^2+1+2x^2-6x-6x^3\)

\(\Leftrightarrow x^4-6x^3+11x^2-8x+2=0\)

\(\Leftrightarrow x^4-x^3-5x^3+5x^2+6x^2-6x-2x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-5x^2+6x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2-4x^2+4x+2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x-2\right)^2-2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-2\right)^2=2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=\sqrt{2}+2\left(TM\right)\\x=-\sqrt{2}+2\left(TM\right)\end{matrix}\right.\)

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm