K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2021

\(\Leftrightarrow1-sin^22x-3sin2x-3=0\)

\(\Leftrightarrow sin^22x+3sin2x+2=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=-2< -1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)

21 tháng 9 2021

-3sin2x là sao vậy ạ

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

NV
21 tháng 9 2021

\(\Leftrightarrow1-sin^22x+3sin2x-3=0\)

\(\Leftrightarrow-sin^22x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=2>1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

NV
21 tháng 9 2021

\(1-sin^23x-5sin3x+5=0\)

\(\Leftrightarrow-sin^23x-5sin3x+6=0\)

\(\Rightarrow\left[{}\begin{matrix}sin3x=1\\sin3x=-6< -1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow3x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

a)

\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)

c)

\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)

\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)

d)

\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

f)

\(\cos 2x-\cos 4x=0\)

\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)

b,e,g bạn xem lại đề, đơn vị không thống nhất.

NV
24 tháng 7 2020

d/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow2\sqrt{2}\left(tanx+1\right)=\frac{3}{cos^2x}+2\)

\(\Leftrightarrow2\sqrt{2}tanx+2\sqrt{2}=3\left(1+tan^2x\right)+2\)

\(\Leftrightarrow3tan^2x-2\sqrt{2}tanx+5-2\sqrt{2}=0\)

Pt vô nghiệm

NV
24 tháng 7 2020

c/

\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)

\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
21 tháng 9 2021

1.

\(tan^2x-5tanx+6=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

2.

\(3cos^22x+4cos2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm arccos\left(-\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

27 tháng 7 2019
https://i.imgur.com/EkFiJjR.jpg
27 tháng 7 2019
https://i.imgur.com/bDYRFb9.jpg
NV
27 tháng 10 2020

1.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)

\(\Leftrightarrow8m.sin2x-3cos2x=5\)

Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)

\(\Leftrightarrow...\)