K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2021

1.

\(tan^2x-5tanx+6=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

2.

\(3cos^22x+4cos2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm arccos\left(-\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)

NV
21 tháng 9 2021

\(1-sin^23x-5sin3x+5=0\)

\(\Leftrightarrow-sin^23x-5sin3x+6=0\)

\(\Rightarrow\left[{}\begin{matrix}sin3x=1\\sin3x=-6< -1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow3x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)

NV
21 tháng 9 2021

\(\Leftrightarrow1-sin^22x+3sin2x-3=0\)

\(\Leftrightarrow-sin^22x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=2>1\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2x=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

NV
21 tháng 9 2021

\(\Leftrightarrow1-sin^22x-3sin2x-3=0\)

\(\Leftrightarrow sin^22x+3sin2x+2=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=-2< -1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)

21 tháng 9 2021

-3sin2x là sao vậy ạ

18 tháng 1 2018

27 tháng 7 2019
https://i.imgur.com/EkFiJjR.jpg
27 tháng 7 2019
https://i.imgur.com/bDYRFb9.jpg
NV
26 tháng 7 2020

\(tan^2x+5tanx-6=0\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-6\right)+l\pi\end{matrix}\right.\)

\(0\le x\le2\pi\) \(\Rightarrow\left\{{}\begin{matrix}0\le\frac{\pi}{4}+k\pi\le2\pi\\0\le arctan\left(-6\right)+l\pi\le2\pi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=\left\{0;1\right\}\\l=\left\{1;2\right\}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}\\x=\frac{5\pi}{4}\\x=arctan\left(-6\right)+\pi\\x=arctan\left(-6\right)+2\pi\end{matrix}\right.\)