Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x --> -2(x - 1)2 \(\le\)0 \(\forall\)x
=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1
b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30
Ta luôn có: -2(x + 3)2 \(\le\)0 \(\forall\)x
=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x
Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3
Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3
3.
a)\(x^2+15x-25=x^2+15x+56,25-81,25\)
\(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\)
Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\)
Vậy.....
b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\)
\(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\)
Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy.....
c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\)
\(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\)
Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và \(\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy......
a)
\(A=x^2-4x+1=x^2-2.2x+2^2-3\)
\(=(x-2)^2-3\)
Vì \((x-2)^2\geq 0, \forall x\Rightarrow A\geq 0-3=-3\)
Vậy GTNN của $A$ là $-3$ khi $x=2$
b) \(B=(x-2)(x-6)+7=x^2-6x-2x+12+7\)
\(=x^2-8x+19=(x^2-2.4x+4^2)+3\)
\(=(x-4)^2+3\)
Vì \((x-4)^2\geq 0, \forall x\Rightarrow B\geq 0+3=3\)
Vậy GTNN của $B$ là $3$ khi $x=4$
c)
\(C=4x-x^2=4-(x^2-4x+4)=4-(x-2)^2\)
Vì \((x-2)^2\geq 0\Rightarrow C\leq 4-0=4\)
Vậy GTLN của $C$ là $4$ khi $x=2$
d) \(D=x^2-2x+y^2-4y+16=(x^2-2x+1)+(y^2-4y+4)+11\)
\(=(x-1)^2+(y-2)^2+11\)
Vì \((x-1)^2\geq 0; (y-2)^2\geq 0, \forall x,y\)
\(\Rightarrow D\geq 0+0+11=11\)
Vậy GTNN của $D$ là $11$ khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
1
a, 2x2+4x+2-2y2 = 2(x2+2x+1-y2)= 2[(x+1)2-y2 ] = 2(x-y+1)(x+y+1)
b, 2x - 2y - x2 + 2xy - y2= 2(x -y) - (x2 - 2xy + y2) = 2(x-y)-(x-y)2=(x-y)(2-x+y)
c, x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x-y-1)(x+y+1)
d, x2-4x-2xy-4y+y2= x2-2xy+y2-4x-4y=(x-y)
2.
a, x2-3x+2=x2-x-2x+2=x(x-1)-2(x-1)=(x-2)(x-1)
b, x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+3)(x+2)
c, x2+6x-6=
Đề này là phân tích đa thức thành nhân tử nha bạn
a/ \(x^2+6x-4y^2+9\)
= \(x^2+6x+9-4y^2\)
= \(\left(x+3\right)^2-\left(2y\right)^2\)
= \(\left(x+3-2y\right)\left(x+3+2y\right)\)
b/ \(x^2-2xy+2zt+y^2-z^2-t^2\)
= \(\left(x-y\right)^2-\left(z^2-2zt+t^2\right)\)
= \(\left(x-y\right)^2-\left(z-t\right)^2\)
= \(\left(x-y-z+t\right)\left(x-y+z-t\right)\)
c/ \(2x^2+4x+2-2y^2\)
= \(2\left(x^2-y^2\right)+2\left(2x+1\right)\)
= \(2\left(x^2-y^2+2x+1\right)\)
= \(2\left[\left(x+1\right)^2-y^2\right]\)
= \(2\left(x+1-y\right)\left(x+1+y\right)\)
d/ \(x^2-2x-8\)
= \(x^2-2x+1-9\)
= \(\left(x-1\right)^2-3^2\)
= \(\left(x-1-3\right)\left(x-1+3\right)\)
= \(\left(x-4\right)\left(x+2\right)\)