Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-x^3+x^2+4=0\)
\(-\left(x^3-x^2-4\right)=0\)
\(x^3-2x^2+x^2+2x-2x-4=0\)
\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)
\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2+x+2\right)=0\)
Vì \(x^2+x+2>0\left(\forall x\right)\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
\(2x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)
\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)
\(\Leftrightarrow x=y=0\)
Ta có :
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\)nên \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)
\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)
- \(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
- \(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
\(x^2+3y^2+2xy-18\left(x+y\right)=73\)
\(\Leftrightarrow x^2+3y^2+2xy-18x-18y-73=0\)
\(\Leftrightarrow x^2-2\left(9-y\right)x+3y^2-18y-73=0\)
\(\Delta'=\left(9-y\right)^2-\left(3y^2-18y-73\right)\)
\(=81-18y+y^2-3y^2+18y+73\)
\(=-2y^2+154\)
\(=-2\left(y^2-77\right)\)
Phương trình có nghiệm khi \(\)
\(\Delta'\ge0\Leftrightarrow-2\left(y^2-77\right)\ge0\Leftrightarrow y^2-77\le0\)
\(\Leftrightarrow y^2\le77\Leftrightarrow-\sqrt[]{77}\le y\le\sqrt[]{77}\)
Phương trình có 2 nghiệm là
\(\left[{}\begin{matrix}x_1=9-y+\sqrt[]{-2\left(y^2-77\right)}\\x_2=9-y-\sqrt[]{-2\left(y^2-77\right)}\end{matrix}\right.\) \(\left(-\sqrt[]{77}\le y\le\sqrt[]{77}\right)\)