Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
a, (x - 1) + (2x + 10 ) = 0
=> x - 1 + 2x + 10 = 0
=> ( x + 2x ) - ( 1 - 10 ) = 0
=> 3x + 9 = 0
=> 3x = -9
=> x = -9 : 3
=> x = -3
b, 2x.(x - 5) +3.(x-5) = 0
=> ( 2x + 3).(x - 5) = 0
=> 2x + 3 =0 hoặc x - 5 = 0
=> 2x = -3 x = 5
=> x = \(\frac{-3}{2}\) x = 5
c, 4x.( x - 3) - 5x + 15 =0
=> 4x .(x - 3) - 5.(x -3 ) = 0
=> ( 4x - 5).(x - 3) =0
=> 4x - 5 = 0 hoặc x - 3 = 0
=> 4x = 5 x = 3
=> x = \(\frac{5}{4}\) x = 3
d, \(x^2-x-3\left(x-1\right)=0\)
=> x.(x - 1) - 3.(x - 1) = 0
=> (x - 3). (x -1 ) = 0
=> x - 3 = 0 hoặc x - 1 = 0
=> x = 3 x = 1
e, \(x^2-9x=0\)
=> x.(x - 9) = 0
=> x = 0 hoặc x - 9 =0
=> x = 0 x = 9
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
Bài 1:
1,\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right).x^2\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right).x^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{5}{3};-2\right\}\)
2,\(2x^2-x=3-6x\)
\(\Leftrightarrow2x^2-x-3+6x=0\)
\(\Leftrightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{2};-3\right\}\)
3,\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;-2\right\}\)
4.\(x^3+2x^2-x-2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-2\right\}\)
Nản quá không làm nữa đâu.Sorry
1: \(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
=>(x+2)(-3x+5)=0
=>x=-2 hoặc x=5/3
2: \(\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
=>(x+3)(2x-1)=0
=>x=1/2 hoặc x=-3
3: \(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
=>(x+2)(x+1)(x-1)=0
hay \(x\in\left\{-2;-1;1\right\}\)
5: \(3x^2+7x-20=0\)
\(\Leftrightarrow3x^2+12x-5x-20=0\)
=>(x+4)(3x-5)=0
=>x=5/3 hoặc x=-4
e) \(⇔\left[\begin{array}{} x-1=0\\\ 2x+7=0\\ x^2+2=0 \end{array}\right.\)\(⇔\left[\begin{array}{} x=1\\\ x=-\frac{7}{2}\\ x^2=-2(ko.xảy.ra) \end{array}\right.\)\(⇔\left[\begin{array}{} x=1\\ x=-\frac{7}{2} \end{array}\right.\)
\(f) ⇔\left[\begin{array}{} 4x-10=0\\ 24+5x=0 \end{array}\right.\)\(⇔\left[\begin{array}{} x=\frac{10}{4}\\ x=-\frac{24}{5} \end{array}\right.\)
\(g) ⇔\left[\begin{array}{} 3,5-7x=0\\ 0,1x+2,3=0 \end{array}\right.⇔\left[\begin{array}{} x=0,5\\ x=-23 \end{array}\right.\)
\(h) ⇔\left[\begin{array}{} 5x+2=0\\ x-7=0 \end{array}\right.⇔\left[\begin{array}{} x=-\frac{2}{5}\\ x=7 \end{array}\right.\)
a: (2x-10)(5x+25)=0
=>2x-10=0 hoặc 5x+25=0
=>x=5 hoặc x=-5
b: (x+15)(x-2)=0
=>x+15=0 hoặc x-2=0
=>x=-15 hoặc x=2
c: =>x(x-7)=0
=>x=0 hoặc x=7
a, (2x - 10) (5x + 25) = 0
⇒ 2x - 10 = 0 hoặc 5x + 25 = 0
⇒ x = 5 hoặc x = -5
b, (x + 15) (x - 2) = 0
⇒ x + 15 = 0 hoặc x - 2 = 0
⇒ x = -15 hoặc x = 2
c: =>x(x-7)=0
=>x=0 hoặc x=7