Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin^3x+cos^3x=2\left(sin^2x+cos^2x\right)\left(sin^3x+cos^3x\right)-2sin^2x.cos^3x-2sin^3x.cos^2x\)
\(\Leftrightarrow sin^3x+cos^3x-2sin^2x.cos^2x\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-2sin^2x.cos^2x\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-\frac{1}{2}sin2x-\frac{1}{2}sin^22x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cos=0\\1-\frac{1}{2}sin2x-\frac{1}{2}sin^22x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sin2x=1\\sin2x=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
a) f'(x) = - 3sinx + 4cosx + 5. Do đó
f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5
<=> sinx - cosx = 1. (1)
Đặt cos φ = , (φ ∈) => sin φ = , ta có:
(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1
<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.
b) f'(x) = - cos(π + x) - sin = cosx + sin.
f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin
<=> = + k2π hoặc = π - x + + k2π
<=> x = π - k4π hoặc x = π + k, (k ∈ Z).
\(\sin^25x+1=\cos^23x\)
<=> \(\sin^25x+1-\cos^23x=0\)
<=> \(\frac{1-\cos10x}{2}+1-\frac{\cos6x+1}{2}=0\)
<=> \(\cos10x+\cos6x=2\)
Mà \(\cos10x;\cos6x\ge1\)=> \(\cos10x+\cos6x\ge2\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\cos10x=1\\\cos6x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}10x=k2\pi\\6x=l2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{k\pi}{5}\\x=\frac{l\pi}{3}\end{cases}};k,l\in Z\Leftrightarrow x=m\pi;m\in\)
Dạ em cảm ơn cô nhiều ạ