Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-1; -6
b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)
PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)
Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)
Vậy....
P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
ĐK : x ≥ 0
⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)
⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)
⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)
⇔ \(-3\sqrt{x}=-5\)
⇔ \(\sqrt{x}=15\)
⇔ \(x=225\)( tm )
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
ĐK : x ≤ 3
⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)
⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)
⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)
⇔ \(3\sqrt{3-x}=6\)
⇔ \(\sqrt{3-x}=2\)
⇔ \(3-x=4\)
⇔ \(x=-1\)( tm )
c) \(\sqrt{9x^2+12x+4}=4\)
⇔ \(\sqrt{\left(3x+2\right)^2}=4\)
⇔ \(\left|3x+2\right|=4\)
⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
ĐK : x ≥ 1
⇔ \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\sqrt{x-1}=1\)
⇔ \(x-1=1\)
⇔ \(x=2\)( tm )
Lời giải:
a) ĐK: \(x>0; x\neq 25; x\neq 36\)
PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)
\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)
\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)
Vậy.......
b)
ĐK: \(x\geq \frac{-1}{2}\)
PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)
\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)
c)
ĐK: \(x\geq 2\)
PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)
\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)
\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)
ĐKXĐ:
a/ \(x-2020>0\Rightarrow x>2020\)
b/ \(x\ne0\)
c/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)
d/ \(\frac{x-3}{1-x}\ge0\Rightarrow1< x\le3\)
Bài 2: ĐKXĐ tự tìm
a/ \(2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\Rightarrow\sqrt{2x}=\frac{28}{13}\)
\(\Rightarrow x=\frac{392}{169}\)
b/ \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\Rightarrow x=9\)
c/ \(3\sqrt{2x+1}>15\Rightarrow\sqrt{2x+1}>5\)
\(\Rightarrow2x+1>25\Rightarrow x>12\)
d/ \(\sqrt{x}+1>12\Rightarrow\sqrt{x}>11\Rightarrow x>121\)
mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu