Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3
<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 = x3 + 3x2 + 3x + 1
<=> x3 + 3x2 + 12x - x3 - 3x2 - 3x = 1 + 9
<=> 9x = 10
<=> x = 10/9
vậy S = {10/9}
b) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22
<=> -5x2 + 2x - 10x + 5x2 + 11x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy S = {-7}
c) (x + 1)(2x - 3) = (2x - 1)(x + 5)
<=> 2x2 - x - 3 = 2x2 + 9x - 5
<=> 2x2 -x - 2x2 - 9x = -5 + 3
<=>-10x = -2
<=> x = 1/5 Vậy S = {1/5}
d) (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> -x + x = 9
<=> 0x = 9 (vô nghiệm)
=> pt vô nghiệm
e) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2
<=> x2 + x - 12 - 6x + 4 = x2 - 8x + 16
<=> x2 - 5x - x2 + 8x = 16 + 8
<=> 3x = 24
<=> x = 8
Vậy S = {8}
g) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x - 1)
<=> x3 + 1 - 2x = x3 - x
<=> x3 - 2x - x3 + x = -1
<=> -x = -1 <=> x = 1
Vậy S = {1}
1) 3x- 2(x - 3 ) =6
<=> 3x - 2x+ 6 =6
<=>x + 6 = 6
=>x= 6 - 6 =0
vậy pt vô nghiệm
1)3x-2(x+3)=6
3x-2x-6-6=0
x=0
không có vô nghiệm nhé
2)(x-1)2=9(x+1)2
x2-2x+1-9(x2+2x+1)=0
-8x2+16x-8=0
-8(x2-2x+1)=0
x2-2x+\(\frac{1}{4}-\frac{1}{4}\)+1=0
(x+1/2)2=-3/4 (vô lý)(vì n2 luôn luôn lớn hơn hoặc bằng hai
=> x thuộc rỗng
đặt x^2-3x+1=a
=> a(a+1)=2
a^2+a=2
a^2+a-2=0
a^2+2a-a-2=0
a(a+2)-(a+2)=0
(a+2)(a-1)=0
=>a+2=0 hoặc a-1=0
x^2-3x+1+2=0 hoặc x^2-3x+1-1=0
x^2-3x+3=0 hoặc x^2-3x=0
TH1 x^2-3x+3=0
xét x^2-3x+3=x^2-3x+9/4+3/4=(x-3/2)^2+3/4>0
=> pt trên ko có nghiệm
x^2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
x=0 hoặc x=3
\(a,\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
\(9x^2-3x-6x+2=9x^2+6x+1\)
\(-9x+2-6x-1=0\)
\(-15x+1=0\)
\(-15x=-1\)
\(x=\frac{1}{15}\)
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
a) ( 2x - 1 )( 2x + 1 ) - ( x - 1 )2 = 3x( x - 2 )
<=> 4x2 - 1 - ( x2 - 2x + 1 ) - 3x( x - 2 ) = 0
<=> 4x2 - 1 - x2 + 2x - 1 - 3x2 + 6x = 0
<=> 8x - 2 = 0
<=> x = 1/4
Vậy phương trình có 1 nghiệm x = 1/4
b) ( 4x - 3 )( 3x + 2 ) = 2( 3x - 1 )( 2x + 5 )
<=> 12x2 - x - 6 - 2( 6x2 + 13x - 5 ) = 0
<=> 12x2 - x - 6 - 12x2 - 26x + 10 = 0
<=> -27x + 4 = 0
<=> x = 4/27
Vậy phương trình có 1 nghiệm x = 4/27
c) ( x - 1 )( x2 + x + 1 ) - 5( 2x - 3 ) = x( x2 - 3 )
<=> x3 - 1 - 10x + 15 - x( x2 - 3 ) = 0
<=> x3 + 14 - 10x - x3 + 3x = 0
<=> -7x + 14 = 0
<=> x = 2
Vậy phương trình có nghiệm x = 2
d) \(\frac{3x-2}{4}-\frac{x+4}{3}=\frac{1+x}{12}\)
<=> \(\frac{3x}{4}-\frac{2}{4}-\frac{x}{3}-\frac{4}{3}=\frac{1}{12}+\frac{x}{12}\)
<=> \(\frac{3}{4}x-\frac{1}{3}x-\frac{1}{12}x=\frac{1}{12}+\frac{1}{2}+\frac{4}{3}\)
<=> \(x\left(\frac{3}{4}-\frac{1}{3}-\frac{1}{12}\right)=\frac{23}{12}\)
<=> \(x\cdot\frac{1}{3}=\frac{23}{12}\)
<=> x = 23/4
Vậy phương trình có 1 nghiệm x = 23/4
PT \(\Leftrightarrow9x^2-6x+1-9x+6=9x^2-18x-27\)
\(\Leftrightarrow9x^2-6x+1-9x+6-9x^2+18x+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow x=-\dfrac{34}{3}\)
Vậy ...
Ta có: \(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-3x+x-3\right)\)
\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)
\(\Leftrightarrow9x^2-15x+7-9x^2+18x+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow3x=-34\)
\(\Leftrightarrow x=-\dfrac{34}{3}\)
Vậy: \(S=\left\{-\dfrac{34}{3}\right\}\)