K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

nhanh lên cảm ơn

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

8 tháng 5 2021

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

b/

\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)

c/

$2x^3+x+3>0$

$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$

$\Leftrightarrow (x+1)(2x^2-2x+3)>0$

$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$

$\Leftrightarrow x+1>0$

$\Leftrightarrow x>-1$

A. 2x + y + 3 = 0

B. 2x + 3y - 8 = 0

C. 2x + 3y + 8 = 0

D. 3x - 2y + 1 = 0

5 tháng 3 2022

$BC$ có vectơ chỉ phương là: $\overrightarrow{BC}=(2;3)$

Gọi $H$ là chân đường cao hạ từ $A$ xuống $BC$ 

$\Rightarrow AH$ có vectơ pháp tuyến là: $\overrightarrow{BC}=(2;3)$

$AH:2x+3y-8=0$

Chọn đáp án: $B$

NV
11 tháng 9 2021

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x+y-4}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+y=a^2\\x+y=b^2+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-b^2-4\\y=-a^2+2b^2+8\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}a+b=19\\a-3\left(a^2-b^2-4\right)+5\left(-a^2+2b^2+8\right)=-8\end{matrix}\right.\)

Tới đây chắc là đơn giản rồi đúng không? Thế trên xuống dưới là xong thôi

11 tháng 9 2021

Vâng ạ

Em cảm ơn thầy ạ

26 tháng 2 2016

\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\)  (*)

 

\(x^5-3x^4+2x^2-2x+2\ge0\) (1)

\(x^4-2x^3-x+2=0\) (2)

\(x^2-3x+2=0\)  (3)

\(\left(x^2-1\right)\left(x-2\right)=0\)  (4)

Từ 

\(x^2-3x+2=0\)  (3) \(\Leftrightarrow\) x=1 hoặc x=2

x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ

x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ

Vậy hệ phương trình (*) có nghiệm duy nhất là x=1

 

 

NV
26 tháng 3 2022

\(f\left(x\right)=\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x^2-5x+6\right)\left(5-x\right)}>0\)

\(\Leftrightarrow\dfrac{\left(3x-4\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)\left(5-x\right)}>0\)

Bảng xét dấu:

undefined

Từ bảng xét dấu ta thấy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 5\\\dfrac{3}{2}< x< 2\\3< x< 5\end{matrix}\right.\)