Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta'=\left(m+3\right)^2-4m-12=m^2+2m-3=\left(m-1\right)\left(m+3\right)>0\)
thì phương trình có hai nghiệm phân biệt. hay \(\orbr{\begin{cases}m>1\\m< -3\end{cases}}\)
Để cả hai nghiệm đó lớn hơn -1 thì nghiệm nhỏ hơn theo công thức viet là :
\(-\left(m+3\right)-\sqrt{m^2+2m-3}>-1\Leftrightarrow-m-2>\sqrt{m^2+2m-3}\)
\(\Leftrightarrow\hept{\begin{cases}-m-2\ge0\\\left(-m-2\right)^2>m^2+2m-3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le-2\\2m>-7\end{cases}}\Leftrightarrow-\frac{7}{2}< m\le-2\)
Kết hợp với điều kiện của delta phẩy ta có
\(-\frac{7}{2}< m< -3\)
bạn ý hỏi bây h mà nói chiều có đáp án thì có đầy ng trả lời r
Δ′=(m+3)2−(4m+12)=m2+2m−3>0⇒[m>1m<−3Δ′=(m+3)2−(4m+12)=m2+2m−3>0⇒[m>1m<−3
Theo hệ thức Viet: {x1+x2=−2(m+3)x1x2=4m+12{x1+x2=−2(m+3)x1x2=4m+12
Pt có 2 nghiệm lớn hơn -1 khi: −1<x1<x2⇔⎧⎨⎩(x1+1)(x2+1)>0x1+x22>−1−1<x1<x2⇔{(x1+1)(x2+1)>0x1+x22>−1
⇔{x1x2+x1+x2+1>0x1+x2>−2⇔{x1x2+x1+x2+1>0x1+x2>−2
⇔{4m+12−2(m+3)+1>0−2(m+3)>−2⇔{4m+12−2(m+3)+1>0−2(m+3)>−2
⇔⎧⎨⎩m>−72m<−2⇔{m>−72m<−2 ⇒−72<m<−2⇒−72<m<−2
Kết hợp điều kiện ban đầu ⇒−72<m<−3
HT
Đk: \(x^3+1\ge0\Leftrightarrow x\ge-1\left(1\right)\)
Đặt \(a=\sqrt{x+1};b=\sqrt{x^2-x+1}\left(a\ge0,b>0\right)\left(2\right)\Rightarrow a^2+b^2=x^2+2\)
Khi đó pt đã cho trở thành: \(10ab=3\left(a^2+b^2\right)\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3b\\b=3a\end{cases}}\)
+) Nếu a=3b thì từ (2) \(\Rightarrow\sqrt{x+1}=3\sqrt{x^2-x+1}\Leftrightarrow9x^2-10x+8=0\)( vô nghiệm)
+) Nếu b=3a thì từ (2) \(\Rightarrow3\sqrt{x+1}=\sqrt{x^2-x+1}\Leftrightarrow9x+9=x^2-x+1\Leftrightarrow x^2-10x-8=0\)
Pt có 2 nghiệm \(x_1=5+\sqrt{33};x_2=5-\sqrt{33}\left(tm\left(1\right)\right)\)
nhanh lên cảm ơn