K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

\((x^3-x^2)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2(x-1)-4(x^2-2x+1)=0\)

\(\Leftrightarrow x^2(x-1)-4(x-1)^2=0\)

\(\Leftrightarrow (x-1)[x^2-4(x-1)]=0\)

\(\Leftrightarrow (x-1)(x^2-4x+4)=0\)

\(\Leftrightarrow (x-1)(x-2)^2=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ x=2\end{matrix}\right.\)

27 tháng 1 2017

x^3 + x^2 + 4 = -2^3 + 2^2 + 4

                     = 0

27 tháng 1 2017

\(x^3+x^2+4=0\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)=0\)
vì x^2 -x +2 >0 nên \(x+2=0\Rightarrow x=-2\)
Vậy nghiệm phương trình là x=-2

31 tháng 3 2015

Đặt a = x2 + 3x - 4 ; b = 2x2 - 5x + 3 

=> 3x2 - 2x - 1 = a + b

khi đó phương trình đã cho có dạng: a3 + b3 = (a+ b)3

=> a3 + b3 = a3 + b3 + 3ab(a + b) => 3ab (a+b) = 0 => a= 0 hoặc b = 0 hoặc a = -b

Nếu a = 0 =>  x2 + 3x - 4  = 0 =>  x2 + 4x- x - 4 =  0 => (x - 1)(x + 4) = 0 => x = 1; -4

Nếu b = 0 =>  2x2 - 5x + 3 = 0 => 2x2 - 2x - 3x + 3 = 0 => (2x-3)(x - 1) = 0 => x = 3/2; 1

Nếu a = - b =>  - (2x2 - 5x + 3) =  x2 + 3x - 4 => 3x2 - 2x - 1 = 0 => 3x2 - 3x + x - 1  = 0 => (3x + 1)(x - 1) = 0 => x = -1/3; 1

Vậy x = 1; 3/2; -1/3; -4

31 tháng 8 2018


Pt ⇔4x2+x+3+4xx+3−−−−√+2x−1+1−22x−1−−−−−√=0⇔(2x−x+3−−−−√)2−√−1)2=0⇔x=1⇔4x2+x+3+4xx+3+2x−1+1−22x−1=0⇔(2x−x+3)2+(2x−1−1)2=0⇔x=1

\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)

16 tháng 4 2020

Hình như đề của bạn sai nên mình sửa lại nhé

x4 + 2x3 +5x2 +4x-12=0

⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0

⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0

⇔(x-1)(x3+3x2+8x+12)=0

⇔(x-1)(x+2)(x2+x+6)=0

ta có x2+x+6 >0 ∀x

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...

27 tháng 3 2020

Đề sai không bạn

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(\Leftrightarrow x\left(x^3+1\right)-x\left(x^3-1\right)=3\)

=>2x=3

hay x=3/2

17 tháng 4 2016

VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)

thay (*) vào VT của pt đầu ta đc

=>9x+7=17

=>9x=10

=>x=\(\frac{10}{9}\)

8 tháng 11 2015

Kết quả:

1. \(-\frac{2}{3}\)

2. \(3\)