Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@
\(\Rightarrow\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}+\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}=0\)
\(\Leftrightarrow\dfrac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\dfrac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{2}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\dfrac{2}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Thứ lại nghiệm thấy thỏa mãn (do ban đầu ko tìm ĐKXĐ nên cần thử lại). Vậy \(x=-2\) là nghiệm duy nhất của pt
Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
1: (x-1)^2+(y+2)^2=25
=>R=5; I(1;-2)
2: Δ'//Δ nên Δ': 3x-4y+c=0
d(I;Δ')=5
=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)
=>|c+11|=25
=>c=14 hoặc c=-36
=>3x-4y+14=0 hoặc 3x-4y-36=0
3x-4y+14=0
=>VTPT là (3;-4) và (Δ') đi qua A(2;5)
=>VTCP là (4;3)
=>PTTS là x=2+4t và y=5+3t
3x-4y-36=0
=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)
=>VTCP là (4;3)
PTTS là x=0+4t và y=-9+3t
\(\left\{{}\begin{matrix}x^3-y^3=2y+8x\\x^2-3y^2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^3-3y^3=6\left(y+4x\right)\\x^2-3y^2=6\end{matrix}\right.\)
\(\Rightarrow3x^3-3y^3=\left(x^2-3y^2\right)\left(y+4x\right)\)
\(\Leftrightarrow3x^3-3y^3=x^2y+4x^3-3y^3-12y^2x\)
\(\Leftrightarrow x^3+x^2y-12xy^2=0\)
\(\Leftrightarrow x\left(x^2+xy-12y^2\right)=0\)
\(\Leftrightarrow x\left(x-3y\right)\left(x+4y\right)=0\)
Đến đây thì dễ rồi
\(\left\{{}\begin{matrix}\frac{1}{x}-\frac{8}{y}=18\\\frac{5}{x}+\frac{4}{y}=51\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}-\frac{8}{y}=18\\\frac{10}{x}+\frac{8}{y}=102\end{matrix}\right.\)
Cộng vế theo vế \(\Rightarrow\frac{11}{x}=120\Rightarrow x=\frac{11}{120}\) Thay vào pt đầu
\(\Rightarrow\frac{1}{\frac{11}{120}}-\frac{8}{y}=18\) \(\Leftrightarrow y=-\frac{44}{39}\)