Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)
\(\Leftrightarrow x^2+3x-12-10x-30=0\)
\(\Leftrightarrow x^2-7x-42=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};1\right\}\)
a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)
Vậy tập nghiệm của phương trình là \(S=ℝ\)
b) \(\left(3x+4\right)^2=4\left(x+3\right)\)
\(\Leftrightarrow9x^2+24x+16=4x+12\)
\(\Leftrightarrow9x^2+20x+4=0\)
\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)
c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)
d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)
Đặt \(t=x^2+3x+2\), ta có :
\(t\left(t+1\right)-2=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)
e)Đề bài sai ! Mik sửa :
\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
Đặt \(t=x^2-5x\), ta có :
\(t^2+10t-24=0\)
\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)
f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)
Đặt \(t=x^2+x+1\), ta có :
\(t\left(t+1\right)-12=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)
g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(t=x^2+x\), ta có :
\(t\left(t-2\right)-24=0\)
\(\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)
h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\), ta có :
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)
Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)
Ta có a2 + b2 = 9
a + b - ab = 3
Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha
Hệ PT <=> hệ 2x - 2y -xy2 =0(1) và x2 + 6y2 = 10(2)
Thế x = 2y/(2-y2) vào (2) ta được
6y6 - 34y4 +68y2 -40 = 0 <=> (y2 -1)(6y4 - 28y2 + 40)=0
Dễ thấy 6y4 - 28y2 + 40 >0 nên y2 - 1= 0
Còn lại bạn tự giải nha