Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
1) Ta có: \(2x\left(x+1\right)-2x^2-2x\)
\(=2x^2+2x-2x^2-2x\)
=0
2) Ta có: \(3x\left(x-2\right)-3\left(x^2-2x\right)+4\)
\(=3x^2-6x-3x^2+6x+4\)
=4
3) Ta có: \(\left(x-1\right)\left(x-5\right)-x^2+6x-5\)
\(=x^2-6x+5-x^2+6x-5\)
=0
4) Ta có: \(\left(2x+1\right)\left(x-1\right)-2x^2+x-5\)
\(=2x^2-2x+x-1-2x^2+x-5\)
=-6
5) Ta có: \(\left(3x-2\right)\left(x-1\right)-3x^2+5x-4\)
\(=3x^2-3x-2x+2-3x^2+5x-4\)
=-2
6) Ta có: \(2x\left(x+1\right)-x\left(x+3\right)-x^2+x+5\)
\(=2x^2+2x-x^2-3x-x^2+x+5\)
=5
\(4x^2-2x+3-4x\left(x-5\right)=7x-3\)
\(\Rightarrow4x^2-2x+3-4x^2+20x=7x-5\)
\(\Rightarrow11x=-8\)
\(\Rightarrow x=\frac{-8}{11}\)
Ta có : 4x2 - 2x + 3 -4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
a: Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
góc ABH chung
Do đó ΔAHB đồng dạng với ΔDAB
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=4,8\left(cm\right)\)
\(DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Bài 4:
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
DE//BC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)(Hệ quả của Định lí Ta lét)
⇒\(\dfrac{3}{5}=\dfrac{DE}{10}\)
hay DE=6(cm)
Vậy: DE=6cm