Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
a/ \(x^2+4x+5=2\sqrt{2x+3}\)
ĐK: \(x\ge-\frac{3}{2}\)
Cách 1:
Đặt \(\sqrt{2x+3}=y+2\text{ (}y\ge-2\text{)}\Rightarrow\left(y+2\right)^2=2x+3\text{ (1)}\)
Pt đã cho trở thành \(\left(x+2\right)^2+1=2\left(y+2\right)\Leftrightarrow\left(x+2\right)^2=2y+3\text{ (2)}\)
\(\left(2\right)-\left(1\right)\Rightarrow\left(x+2\right)^2-\left(y+2\right)^2=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+6\right)=0\)
\(\Leftrightarrow x=y\text{ }\left(\text{do }x\ge-\frac{3}{2};\text{ }y\ge-2\text{ nên }x+y+6\ge-\frac{3}{2}-2+6>0\right)\)
Do đó, phương trình đã cho tương tương:
\(x=\sqrt{2x+3}-2\Leftrightarrow x+2=\sqrt{2x+3}\Leftrightarrow\left(x+2\right)^2=2x+3\)
\(\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
Cách 2:
\(pt\Leftrightarrow\frac{1}{4}\left(2x+3\right)^2+\frac{1}{2}\left(2x+3\right)+\frac{5}{4}=2\sqrt{2x+3}\)
Đặt \(t=\sqrt{2x+3};\text{ }t\ge0\)
pt thành \(\frac{1}{4}t^4+\frac{1}{2}t^3+\frac{5}{4}=2t\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+5\right)=0\)
\(\Leftrightarrow t-1=0\text{ }\left(\text{do }t^2+2t+5=\left(t+1\right)^2+4>0\right)\)
\(\Leftrightarrow t=1\)
Do đó, phương trình đã cho tương đương:
\(\sqrt{2x+3}=1\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
Cách 3:
\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left[\left(2x+3\right)-2\sqrt{2x+3}+1\right]=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow x+1=0\text{ và }\sqrt{2x+3}-1=0\)
\(\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
b/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow2\left(x^2-2x+4\right)-2\left(x+2\right)=3\sqrt{x+2}.\sqrt{x^2-2x+4}\)
Đặt \(a=\sqrt{x^2-2x+4};\text{ }b=\sqrt{x+2}\left(a>0;\text{ }b\ge0\right)\)
Pt thành: \(2a^2-2b^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow a=2b\text{ }\left(\text{do }a>0;\text{ }b\ge0\text{ nên }2a+b>0\right)\)
Pt đã cho tương đương: \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\Leftrightarrow x^2-2x+4=4\left(x+2\right)\)
\(\Leftrightarrow x^2-6x-4=0\Leftrightarrow x=3+\sqrt{13}\text{ hoặc }x=3-\sqrt{13}\)
Kết luận: \(x=3+\sqrt{13};\text{ }x=3-\sqrt{13}\)
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
1.
$\sqrt{3x^2}-\sqrt{12}=0$
$\Leftrightarrow \sqrt{3x^2}=\sqrt{12}$
$\Leftrightarrow 3x^2=12$
$\Leftrightarrow x^2=4$
$\Leftrightarrow (x-2)(x+2)=0\Leftrightarrow x=\pm 2$
2.
$\sqrt{(x-3)^2}=9$
$\Leftrightarrow |x-3|=9$
$\Leftrightarrow x-3=9$ hoặc $x-3=-9$
$\Leftrightarrow x=12$ hoặc $x=-6$