Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-4-x-1)(3x-4+x+1)=0
(2x-5)(4x-3)=0
2x-5 = 0 hoặc 4x-3=0
2x=5 hoặc 4x=3
x=5/2 hoặc x=3/4
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
Ta có: \(3x^2-x+2\)
\(=3\left(x^2-\dfrac{1}{3}x+\dfrac{2}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{23}{36}\right)\)
\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{23}{12}\ge\dfrac{23}{12}>0\forall x\)(đpcm)
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
ta có x^2 > hoặc = x
=> x^2 - x > hoặc = 0
=> x^2 - x + 3/4 > hoặc = 3/4
mà 3/4 >0 => x^2- x +3/4 >0
\(x^2+8x+17=(x^2+2.4x+16)+1=(x+4)^2+1\geq1>0\)
\(\Rightarrow x^2+8x+17 > 0 \) với mọi x
\(\Rightarrow đpcm\)
\(x^2+8x+17=x^2+8x+16+1=\left(x+4\right)^2+1\ge1>0\forall x\)
Hay: \(x^2+8x+17>0\forall x\)
=.= hok tốt!!