Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\)
\(=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(=\left(20^2-1^2\right)-\left(19^2-2^2\right)+\left(18^2-3^2\right)-...-\left(11^2-10^2\right)\)
\(=21.\left(20-1\right)-21\left(19-2\right)+21\left(18-3\right)-...-21\left(11-10\right)\)
\(=21.19-21.17+21.15-...-21.1\)
\(=21\left(19-17+15-13+...+3-1\right)\)
\(=21\left(2+2+...+2\right)=21.2.5=210\)
Ta có:\(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\)
\(=20^2+18^2+16^2+...+4^2+2^2-19^2-17^2-15^2-...-3^2-1^2\)
\(=(20^2-19^2)+(18^2-17^2)+...+(4^2-3^2)+(2^2-1^2)\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=20+19+18+17+...+4+3+2+1\)
\(=\dfrac{\left(20+1\right).20}{2}=\dfrac{21.20}{2}=210\)
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)
\(\left(20^2+18^2+16^2+......+4^2+2^2\right)-\left(19^2+17^2+.....+3^2+1^2\right)\)
\(=20^2-19^2+18^2-17^2+......+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+.......+\left(2-1\right)\left(2+1\right)\)
\(=39+35+....+7+3\)
\(=\left(39+3\right)\left[\left(39-3\right):4+1\right]:2=210\)
`B17:`
`a)` Với `x \ne +-3` có:
`A=[x+15]/[x^2-9]+2/[x+3]`
`A=[x+15+2(x-3)]/[(x-3)(x+3)]`
`A=[x+15+2x-6]/[(x-3)(x+3)]`
`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`
`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)
`=>` Ko có gtr nào của `x` t/m
`c)A in ZZ<=>3/[x-3] in ZZ`
`=>x-3 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x-3=1=>x=4`
`@x-3=-1=>x=2`
`@x-3=3=>x=6`
`@x-3=-3=>x=0`
________________________________
`B18:`
`a)M=1/3` `ĐK: x \ne +-4`
`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`
`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`
`<=>32/[x-4].[x+4]/32=1/3`
`<=>3x+12=x-4`
`<=>x=-8` (t/m)
=(20^2-19^2)+(18^2-17^2)+.....+(4^2-3^2)+(2^2-1^2)
=(20+19)(20-19)+(18+17)(18-17)+.....+((4+3)(4-3)+(2+1)(2-1)
=39+35+.....+7+3
=(3+39)10/2=210
mik ko chép lại đề bài nha
a) = (123)2- 12- (36. 46)
= (126-1)- (3.4)6
= 126-1-126
= -1
Bài 2: Bạn sử dụng các hằng đẳng thức đáng nhớ là ra.
a)
\(x^2+2x+1=(x+1)^2\)
b)
\(1-4x+4x^2=1^2-2.1.2x+(2x)^2=(1-2x)^2\)
c)
\(a^2+9-6a=a^2-2.3.a+3^2=(a-3)^2\)
\Leftrightarrow \left\{\begin{matrix}
\\
\end{matrix}\right.
ĐẶT
\(C=\text{ (20² + 18² + 16² + ... + 4² + 2²) - (19² + 17² + 15² + ... + 3² + 1²) }\)
\(C=\text{ 20² + 18² + 16² + ... + 4² + 2² - 19² - 17² - 15² - ... - 3² - 1² }\)
\(C=\text{ (20² - 19²) + (18² - 17²) + (16² - 15²) + .... + (4² - 3²) + (2² - 1²) }\)
\(C=\text{(20 + 19).(20 - 19) + (18 + 17).(18 - 17) + (16 + 15).(16 - 15) + .... + (2 + 1).(2 - 1) }\)
\(C=\text{ 20 + 19 + 18 + 17 + 16 + ..... + 2 + 1 }\)
\(C=\dfrac{20.\left(20+1\right)}{2}\)
\(C=210\)
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...