Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
 I C B D O E
.Ta có :ICIC là tiếp tuyến của (O)
\(\Rightarrow\widehat{CIE}=\widehat{IBC}\)
\(\Rightarrow\)ΔICE∼ΔIBC(g.g)\(\Rightarrow\)
IEIC=ICIB→ICE^=IBC^→ΔICE∼ΔIBC(g.g)→IEIC=ICIB
\(\Rightarrow\)IC2=IE.IB→IC2=IE.IB
Ta có : BD//AC\(\Rightarrow\widehat{IAE}=\widehat{EDB}=\widehat{ABE}\)
\(\Rightarrow\)ΔAIE∼ΔBIA(g.g)\(\Rightarrow\)
AIBI=IEIA\(\Rightarrow\)
IA2=IB.IE→ΔAIE∼ΔBIA(g.g)→AIBI=IEIA→IA2=IB.IE
→IA2=IC2→IA=IC→I→IA2=IC2→IA=IC→I là trung điểm AC
Dễ có IC là tiếp tuyến của đường tròn nên IC2 = IB.IE (1)
Theo tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: ^EBA = ^BDA
Lại có: ^BDA = ^DAC (BD//AC, hai góc so le trong)
Từ đó suy ra ^EBA = ^DAC
∆AIE và ∆BIA có: ^AIB là góc chung, ^EBA = ^DAC (cmt) nên ∆AIE ~ ∆BIA (g.g)
=>\(\frac{IA}{IE}=\frac{IB}{IA}\Rightarrow IA^2=IB.IE\)(2)
Từ (1) và (2) suy ra IA2 = IC2 hay IA = IC
Vậy I là trung điểm của AC (đpcm)
a.Vì AB là tiếp tuyến của (O)
\(\Rightarrow MB\) là tiếp tuyến của (O)
\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)
\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)
b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)
Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)
\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)
c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)
\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)
\(\Rightarrow\Delta BCD\) cân tại B
a. Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
\(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
\(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.
Suy ra: tứ giác ABOC nội tiếp.
b. Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.
\(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao
\(\Rightarrow\)AO\(\perp\)BC tại H.
Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:
AO2 = AB2 + BO2 = 42 + 32 = 25
\(\Rightarrow\)AO = 5 (cm).
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:
AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)
c. Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )
Xét \(\Delta\)ACE và \(\Delta\)ADC có:
\(\Lambda ACE=\Lambda ADC\)
\(\Lambda\)CAD chung
Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:
AC2 = AH.AO (2)
Từ (1) và (2) ,suy ra: AD.AE = AH.AO.
a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)
Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)
b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.
Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:
\(AO^2=AB^2+BO^2=4^2+3^2=25\)
\(\Rightarrow\sqrt{AO}=5\) cm.
Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:
\(AB^2=AH\cdot AO\)
\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
O A B C D M E T I H K J O B C A D E P Q N Hình 1 Hình 2
a) Xét đường tròn (O): 2 tiếp tuyến AB, AC => AB=AC (T/c 2 tiếp tuyến cắt nhau) => OA là trung trực của BC (Vì OB=OC)
=> OA vuông góc BC. Mà BD//AO nên BC vuông góc BD (Qh song song vuông góc) => CD là đường kính của (O)
Do đó: ^CED=900 (Góc nt chắn nửa đường tròn) hoặc ^CEA=900 => \(\Delta\)ACE vuông tại E
Xét \(\Delta\)ACE: Vuông đỉnh E, trung tuyến EM => ME = MC. Từ đó có: \(\Delta\)MEO = \(\Delta\)MCO (c.c.c)
=> ^MEO = ^MCO (Cặp góc tương ứng). Mà ^MCO=900 nên ^MEO=900 => ME là tiếp tuyến của (O) (đpcm).
b) Gọi K là giao điểm của OE với đoạn BC, H là giao điểm của OA và BC, J là giao điểm của EM với OA.
Xét \(\Delta\)OTJ có: TH vuông góc OJ (Do BC vuông góc OA); OE vuông góc TJ (Do EM là tiếp tuyến (O))
TH cắt OE tại K nên K là trực tâm \(\Delta\)OTJ => JK vuông góc OT (*)
Qua hệ thức lượng trong tam giác vuông, dễ có: R2 = OE2 = OB2 = OH.OA => \(\Delta\)OHE ~ \(\Delta\)OEA (c.g.c)
=> ^OEH = ^OAE hay ^KEH = ^OAI (1)
Dễ thấy tứ giác HKEJ nội tiếp đường tròn đường kính KJ => ^KEH = ^HJK (2)
Từ (1) và (2) suy ra: ^OAI = ^HJK => JK // AI (2 góc đồng vị bằng nhau) (**)
Từ (*) và (**) suy ra: AI vuông góc OT (Qh song song vuông góc)
Xét trong \(\Delta\)OAT: TH vuông góc OA; AI vuông góc OT, I thuộc TH
=> I là trực tâm \(\Delta\)OAT => OI vuông góc AT (đpcm).
c) (Hình 2) Gọi N là trung điểm của DE, có ngay ON vuông góc DE (Do DE là dây của (O))
Dễ thấy 5 điểm A,B,N,O,C cùng thuộc đường tròn đường kính OA => Tứ giác ABNC nội tiếp
=> ^BAN = ^BCN. Mà ^PEN = ^BAN (Vì PE // AB) nên ^BCN = ^PEN hay ^PCN = ^PEN
=> Tứ giác CNPE nội tiếp => ^ENP = ^ECP = ^ECB = ^EDB => NP // BD (2 góc đồng vị bằng nhau)
Xét \(\Delta\)DQE có: N là trung điểm DE, NP // BD, P thuộc QE => P là trung điểm của QE hay PQ = PE (đpcm).
ngủ hết r
còn mik nè