Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .
. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )
. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .
Mà \(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)
\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)
\(A=\dfrac{4+\sqrt{15}}{4-\sqrt{15}}+\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\)
\(=\dfrac{\left(4+\sqrt{15}\right)^2+\left(4-\sqrt{15}\right)^2}{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)
\(=\dfrac{\left(16+8\sqrt{15}+15\right)+\left(16-8\sqrt{15}+15\right)}{16-15}\)
\(=\dfrac{62}{1}=62\)
\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{x-4}\)
\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}\)
Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).
Xét f(x) khác hằng.
Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)
\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).
Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).
Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).
Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).
Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.