Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3\(\sqrt{5}\)= \(\sqrt{3^2.5}\)=\(\sqrt{45}\)
-5\(\sqrt{2}\)= \(-\sqrt{5^2.2}\)= -\(\sqrt{50}\)
\(\dfrac{-2}{3}\sqrt{xy}\) = \(-\sqrt{\left(\dfrac{2}{3}\right)^2xy}\) = -\(\sqrt{\dfrac{4}{9}xy}\)
x\(\sqrt{\dfrac{2}{x}}\)= \(\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\)
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2\cdot\dfrac{2}{x}}=\sqrt{2x}\)
\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2}{5}\cdot x^2}=\sqrt{\dfrac{2x^2}{5}}\)
\(\left(x-5\right)\cdot\sqrt{\dfrac{x}{25-x^2}}=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{-\left(x-5\right)\left(x+5\right)}}=\sqrt{-\dfrac{x\left(x-5\right)}{x+5}}\)
\(x\sqrt{\dfrac{7}{x^2}}=\sqrt{x^2\cdot\dfrac{7}{x^2}}=\sqrt{7}\)
\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)
\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)
Bài 2:
a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)
b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)
a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)
b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)
\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)
a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)
b, đề không rõ ràng
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
\(3\sqrt{5}=\sqrt{45}\)
\(-5\sqrt{2}=-\sqrt{25}.\sqrt{2}=-\sqrt{50}\)
\(\dfrac{-2}{3}\sqrt{xy}=-\sqrt{\dfrac{4}{9}}.\sqrt{xy}=-\sqrt{\dfrac{4}{9}xy}\left(xy\ge0\right)\)
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2}.\sqrt{\dfrac{2}{x}}=\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\left(x>0\right)\)