Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Phương pháp: Sử hệ thức của định luật Ôm và công thức tính công suất tiêu thụ
Cách giải: Giả sử cuộn dây thuần cảm: Ta có, khi R = R2 công suất tiêu thụ trên biến trở cực đại.
Khi đó ta có: R2 = |ZL - ZC | = 40 - 25 = 15W
Mặt khác:
=> điều giả sử ban đầu là sai => Cuộn dây không thuần cảm có điện trở r. Ta có:
+ Ban đầu khi mắc vào hai đầu A, M một ắc quy có suất điện động E = 12V, điện trở trong R 1 = 4 W thì I1 = 0,1875 Theo định luật Ôm, ta có:
+ Khi mắc vào A,B một hiệu điện thế u = 120 2 cos ( 100 πt ) ( V ) , R = R 2 , thì công suất tiêu thụ trên biến trở cực đại và bằng 160W
Ta có: Công suất trên biến trở R đạt cực đại khi
Mặt khác, ta có: Công suất trên R2:
Kết hợp với (2) ta được:
Với r = 20W thay vào (1)
Chọn A
Lúc sau: \(P'=\frac{U^2.R^2}{R^2_2+Z^2_C}=\frac{U^2.R^2}{R^2_2+R_1R_2}=\frac{U^2}{R_1+R_2}=P=85W\)
Hướng dẫn:
\(U_{AB}=U_C=2\) (1)
\(U_{BC}^2=U_r^2+U_L^2=3\) (2)
\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)
Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)
Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
R1 + R2 = U2/P => U=120 V
R1R2 =(ZL-ZC)2=5184
Cos$1 = R1/(R12+R1R2)0.5=0.6
Cos$2=R2/(R22+R1R2)0.5=0.8
Ta có: \(U_L=U_C=\dfrac{U_R}{2}\)
\(\Rightarrow Z_L=Z_C=\dfrac{R}{2}=100\Omega\)
\(\Rightarrow R = 200\Omega\)
Tổng trở \(Z=R=200\Omega\) (do \(Z_L=Z_C\))
Cường độ dòng điện: \(I=\dfrac{U}{Z}=\dfrac{120}{200}=0,6A\)
Công suất: \(P=I^2.R=0,6^2.200=72W\)
Đáp án A
+ Khi đặt vào hai đầu AM một điện áp không đổi:
.
Dung kháng và cảm kháng của đoạn mạch khi đặt vào đoạn mạch điện áp xoay chiều có
.
+ Công suất tiêu thụ của biến trở khi .
→ Ta có hệ
Vậy