Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E minh họa thôi --
a, Xét tam giác ABM và tam giác ACM ta có :
AB = AC ( gt )
AM _ chung
BM = MC ( M là trung điểm )
=> tam giác ABM = tam giác ACM ( c.c.c )
b, Xét tam giác BME và tam giác CMA ta có :
ME = MA ( gt )
^BME = ^CMA ( đđ )
BM = MC ( M là trung điểm )
=> ^BEM = ^CAM ( 2 góc tương ứng )
mà ^BEM và ^CAM ở vị trí so le trong
=> AC // BE
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Xét tam giác OBM và tam giác OAM có
OMA=OMB=90(gt)
OM cạnh chung
AOM=BOM(gt)
Do đó tam giác OBM=OAM(CH-GN) (1)
--> Cạnh AM=MB (2 cạnh tương ứng)
b) Từ (1) tcó: OA=OB(2 cạnh tương ứng)
---> Tam giác OAB là tam giác cân
:33
Giải:
Hình bạn tự vẽ nhé.
a) Vì M là trung điểm của đoạn thẳng BC (gt)
nên BM = CM
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\AMchung\\BM=CM\left(cmt\right)\end{cases}}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\) (đpcm)
b) Xét \(\Delta ACM\) và \(\Delta BEM\) có:
EM = AM (gt)
\(\widehat{BME}=\widehat{AMC}\) (2 góc đối đỉnh)
BM = CM (cmt)
\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)
\(\Rightarrow\widehat{EBM}=\widehat{ACM}\) (2 góc tương ứng)
Mà góc này ở vị trí so le trong
\(\Rightarrow AC//BE\) (dấu hiệu nhận biết) (đpcm)
c) Xét \(\Delta ABM\) và \(\Delta CEM\) có:
AM = EM (gt)
\(\widehat{CME}=\widehat{AMB}\) (2 góc đối đỉnh)
BM = CM (cmt)
\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\) AB = CE (2 cạnh tương ứng)
\(\widehat{ABM}=\widehat{ECM}\) (2 góc tương ứng) hay \(\widehat{ABC}=\widehat{BCE}\)
Xét \(\Delta BCE\) và \(\Delta ABC\) có:
\(\hept{\begin{cases}AB=CE\left(cmt\right)\\\widehat{BCE}=\widehat{ABC}\left(cmt\right)\\BCchung\end{cases}}\Rightarrow\Delta ABC=\Delta BCE\left(c.g.c\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{BAC}\) (2 góc tương ứng)
hay \(\widehat{CEK}=\widehat{BAH}\)
Ta có: CK _|_ BE tại K (gt)
BH _|_ AC tại H (gt)
\(\hept{\begin{cases}\widehat{CKE}=90^o\\\widehat{AHB}=90^o\end{cases}}\Rightarrow\widehat{CKE}=\widehat{AHB}=90^o\)
Xét \(\Delta CEK\) và \(\Delta ABH\)có:
\(\hept{\begin{cases}\widehat{CKE}=\widehat{AHB}=90^o\left(cmt\right)\\AB=CE\left(cmt\right)\\\widehat{CEK}=\widehat{BAH}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta CEK=\Delta BAH\) (cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{ABH}=\widehat{ECK}\) (2 góc tương ứng) (đpcm)
d) Gọi giao điểm của EM và CK là P, của BH và AM là Q
Ta có: \(\widehat{BEM}=\widehat{CAM}\) (vì \(\Delta ACM=\Delta EBM\)) \(\Rightarrow\widehat{KEP}=\widehat{HAQ}\)
Ta có: \(\widehat{CKE}=\widehat{AHB}\left(cmt\right)\)
\(\Rightarrow\widehat{EKP}=\widehat{AHQ}\)
Xét \(\Delta EKP\) và \(\Delta AHQ\) có:
\(\widehat{KEP}=\widehat{HAQ}\left(cmt\right)\)
EK = AH (vì \(\Delta CEK=\Delta BAH\))
\(\widehat{EKP}=\widehat{AHQ}\left(cmt\right)\)
\(\Rightarrow\Delta EKP=\Delta AHQ\left(g.c.g\right)\)
\(\Rightarrow KP=HQ\) (2 cạnh tương ứng)
Lại có: BE = AC (vì \(\Delta BEM=\Delta CAM\))
EK = AH (cmt)
Mà \(\hept{\begin{cases}BE=BK+EK\\AC=CH+AH\end{cases}}\Rightarrow BK=CH\)
Vì BE // AC (cmt)
nên \(\widehat{BKH}=\widehat{CHK}\) (2 góc so le trong)
Xét \(\Delta BHK\) và \(\Delta CHK\) có:
\(\hept{\begin{cases}BK=CH\left(cmt\right)\\\widehat{BKH}=\widehat{CHK}\left(cmt\right)\\HKchung\end{cases}}\Rightarrow\Delta BHK=\Delta CKH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BHK}=\widehat{CKH}\) (2 góc tương ứng)
hay \(\widehat{MHQ}=\widehat{MKP}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow BH//CK\) (dấu hiệu nhận biết)
\(\Rightarrow\widehat{KPQ}=\widehat{HQP}\) (2 góc so le trong)
hay \(\widehat{HQM}=\widehat{KPM}\)
Xét \(\Delta KMP\) và \(\Delta HMQ\) có:
\(\hept{\begin{cases}\widehat{HQM}=\widehat{KPM}\left(cmt\right)\\KP=HQ\left(cmt\right)\\\widehat{MHQ}=\widehat{MKP}\left(cmt\right)\end{cases}}\Rightarrow\Delta KMP=\Delta HMQ\left(g.c.g\right)\)
\(\Rightarrow\)KM = HM (2 cạnh tương ứng) (*)
\(\widehat{KMP}=\widehat{HMQ}\) (2 góc tương ứng)
Mà \(\widehat{HMQ}+\widehat{HMP}==180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{KMP}+\widehat{HMP}=180^o\)
hay \(\widehat{HMK}=180^o\)
\(\Rightarrow\)3 điểm M, H, K thẳng hàng (**)
Từ (*), (**)
\(\Rightarrow\) M là trung điểm của HK (đpcm)
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
nếu bạn không phiền thì bạn vẽ hình hộ mình được không? Mình thấy phần vẽ hình hơi khó hiểu