Câu hỏi 5:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)               (theo t/c dãy TSBN)

Mà \(\frac{2x+1}{5}=\frac{2x+3y-1}{6x}=>\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>6x=12

=>x=2

Thay x=2 vào \(\frac{2x+1}{5}=\frac{3y-2}{7}\) ta được:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

=>\(\frac{3y-2}{7}=1\)

=>3y-2=7

=>3y=9

=>y=3

Vậy cặp số (x;y) thỏa mãn là (2;3)

 

29 tháng 11 2017

a5 = 5 vi tat ca phep cchia deu = 1

16 tháng 11 2021

Bài 3

a, \(|x+\frac{7}{3}|\ge|-3,5|\)

\(\Rightarrow|x+\frac{7}{3}|\ge3,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{3}\ge3,5\\x+\frac{7}{3}\le-3,5\end{cases}\Rightarrow\orbr{\begin{cases}x\ge\frac{7}{6}\\x\le-\frac{35}{6}\end{cases}}}\)

Vậy .....

b,\(|x-1|\le3\frac{1}{4}\)

\(\Rightarrow|x-1|\le\frac{13}{4}\)\(\Rightarrow\orbr{\begin{cases}x-1\le\frac{13}{4}\\x-1\ge-\frac{13}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x\le\frac{17}{4}\\x\ge-\frac{9}{4}\end{cases}}}\)

Vậy ....

Bài 4 :

Vì \(|2x-\frac{1}{3}|\ge0\forall x\Rightarrow|2x-\frac{1}{3}|-1\frac{3}{4}\ge-1\frac{3}{4}\)

Dấu "=" sảy ra <=> \(2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)

Vậy .....

Bài 5

B = \(\frac{1}{3+\frac{1}{2}.|2x-3|}=\frac{1}{3+|x-1,5|}\)

mà \(|x-1,5|\ge0\forall x\Rightarrow3+|x-1,5|\ge3\forall x\)

\(\Rightarrow B\le\frac{1}{3}\)

Dấu "=" sảy ra <=> x - 1,5= 0 <=> x = 1,5

Vậy .....

Học tốt 

có bài  nào hay ib mk ha

#Gấu

25 tháng 7 2021

a, Ta có: \(\frac{a}{c}\)\(\frac{c}{b}\)\(\Rightarrow\)\(ab\)\(c^2\)

Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)

Ta có: b(a2+c2)= b.a2+b.c(1)

Thay ab= c2 vào 1 ta có:

b.a2+b.a.b= b2.a+a2.bb

Ta có: a(b2+c2) = a.b2+a.c2 (2)

Thay ab= c2 vào (1) ta có:

a.b2+b.a.a= b2.a+a2.bb

Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)

\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)

\(\Rightarrow\)Đpcm (Điều phải chứng minh)

Chúc bn học tốt

25 tháng 7 2021

a.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

b.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:

$\frac{x}{y}=\frac{7}{10}\Rightarrow \frac{x}{7}=\frac{y}{10}$

$\frac{y}{z}=\frac{5}{8}\Rightarrow \frac{y}{5}=\frac{z}{8}$
$\Rightarrow \frac{x}{7}=\frac{y}{10}=\frac{z}{16}$
Áp dụng TCDTSBN:

$\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x}{14}=\frac{5y}{50}=\frac{2z}{32}=\frac{2x+5y-2z}{14+50-32}=\frac{96}{32}=3$

$\Rightarrow x=7.3=21; y=10.3=30; z=16.3=48$

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Bài 2:

Áp dụng TCDTSBN:

$\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{z}{5}$

$=\frac{2x-3y+z}{6-12+5}=\frac{7}{-1}=-7$

$\Rightarrow x=(-7).3=-21; y=4(-7)=-28; z=5(-7)=-35$

5 tháng 1 2016

tieu tru di het con 0 ban a

5 tháng 1 2016

Câu 9:Cho ?$a+b+c+d%20\neq%200$ và ?$\frac{a}{b+c+d}%20=%20\frac{b}{c+d+a}%20=%20\frac{c}{a+b+d}%20=%20\frac{d}{a+b+c}$ . Giá trị của biểu thức ?$A%20=%20\frac{a+c}{b+d}%20+%20\frac{a+b}{c+d}%20+%20\frac{a+c}{b+d}%20+%20\frac{b+c}{a+d}$ là 4