Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nội dung:
Định lí Pi- ta - go : Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương hai cạnh góc vuông
Ví dụ: Tam giác ABC vuông tại A, ta có: BC2 = AB2 + AC2
Định lí Pi- ta - go (đảo): Nếu một tam giác có bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại của tam giác thì tam giác đó là tam giác vuông
Ví dụ: Nếu tam giác ABC có : AC2 = AB2 + BC2 thì tam giác ABC vuông tại B
Định lí Pytago thuận.
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.
∆ABC :BC2=AB2+AC2
=> góc BAC=902
thuận
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
đảo
Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.
Trong một tam giác vuông bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
Hình minh hoạ:
Áp dụng định lí Py-ta-go ta có: \(BC^2=AB^2+AC^2=AH^2+HB^2+AH^2+HC^2=2+HB^2+HC^2\left(đpcm\right)\)
Xét tam giác AHB vuông tại H ta được
\(AB^2=BH^2+AH^2\)(1)
Xét tam giác AHC vuông tại H ta được
\(AC^2=AH^2+CH^2\)(2)
Xét tam giác ACB vuông tại A ta được
\(BC^2=AB^2+AC^2\)(3)
Lấy (1) + (2) ta được \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2\)
kết hợp với (3) ta được
\(BC^2=BH^2+CH^2+2\)
1,Trung tuyến là gì?
2,Đường trung trực là gì?
3,phát biểu tiên đề ơclit?
4,Phát biểu định lí pi-ta-go?
1.trung tuyến của một tam giác là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện. Mỗi tam giác đều có ba trung tuyến. Đối với tam giác cân và tam giác đều, mỗi trung tuyến của tam giác chia đôi các góc ở đỉnh với hai cạnh kề có chiều dài bằng nhau.
2.đường trung trực của một đoạn thẳng là đường vuông góc với đoạn thẳng tạitrung điểm của đoạn thẳng đó.Trong đường tròn, giao 2 tiếp tuyến thì điểm đó đến tâm là đường trung trực.
3.Qua một điểm nằm ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.
4.Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
1. Là: Khu vực nối liền giữa hậu phương và tiền tuyến.
2. Là: Đường thẳng vuông góc với một đoạn thẳng tại điểm giữa của đoạn ấy.
3.
1. Tiên đề ơclit
Qua một điểm nằm ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.
2. Tính chất của hai đường thẳng song song
Nếu một đường thẳng cắt hai đường thẳng song song thì:
a) Hai góc sole trong bằng nhau.
b) Hai góc đồng vị bù nhau.
c) Hai góc trong cùng phía bù nhau.
4.
1. Định lí Pytago Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
2.
1. Định lí Pytago
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
2. Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.
∆ABC :BC2=AB2+AC2
=> ˆBACBAC^= 902.
định lý pi ta được phát biểu như sau đối với tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\)
Cách phát biểu của Euclid:
Tổng diện tích của hai hình vuông vẽ trên cạnh kề của một tam giác vuông bằng diện tích hình vuông vẽ trên cạnh huyền của tam giác này.
Một tam giác vuông là một tam giác có một góc vuông; các cạnh kề góc vuông đó còn gọi là cạnh góc vuông thuộc tam giác đó; cạnh huyền là cạnh đối diện với góc vuông. Trong hình vẽ dưới, a và b là các cạnh kề(cạnh góc vuông), c là cạnh huyền:
Pythagoras đã phát biểu định lý mang tên ông trong cách nhìn của hình học phẳng thông qua:
Diện tích hình vuông tím(hinh c) bằng tổng diện tích hình vuông đỏ (b) và xanh lam (a).
Tương tự, quyển tsubasa chép:
Một dây thừng nối dọc đường chéo hình chữ nhật tạo ra một diện tích bằng tổng diện tích tạo ra từ cạnh ngang và cạnh dọc của hình chữ nhật đó.
Dùng đại số sơ cấp hay hình học đại số, có thể viết định lý Pytago dưới dạng hiện đại, chú ý rằng diện tích một hình vuông bằng bình phương độ dài của cạnh hình vuông đó:
Nếu một tam giác vuông có cạnh kề dài bằng a và b và cạnh huyền dài c, thì a2 + b2 = c2
Định lý này được đặt tên theo nhà vật lí học và nhà toán học Hy Lạp Pytago
có hàng trăm cách rất nhiều
có 2 định lí pi- ta- go là
+ Định lí pi-ta-go thường
trong một tam giác vuông ,bình phuong của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông
+ Định lí pi-ta-go đảo
nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông