K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(=\dfrac{x\left(x+1\right)}{5\left(x+1\right)^2}\cdot\dfrac{5x-1}{3\left(x+1\right)}=\dfrac{x\left(5x-1\right)}{15\left(x+1\right)^2}\)

14 tháng 12 2021

\(\dfrac{x^2+x}{5x^2+10x+5}:\dfrac{3x+3}{5x-1}=\dfrac{x\left(x+1\right)}{5\left(x^2+2x+1\right)}:\dfrac{3\left(x+1\right)}{5x-1}=\dfrac{x\left(x+1\right)}{5\left(x+1\right)^2}.\dfrac{5x-1}{3\left(x+1\right)}=\dfrac{x\left(5x-1\right)}{15\left(x+1\right)^2}\)

11 tháng 12 2017

\(a.\)

\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)

\(=\left(x-5\right)\left(x+5\right).\dfrac{3x-7}{2\left(x+5\right)}\)

\(=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)

\(b.\)

\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\dfrac{5\left(x-1\right)}{3\left(x+3\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}\)

\(=\dfrac{x}{3\left(x-1\right)}\)

11 tháng 12 2017

\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}=\dfrac{5x\left(x+1\right)\left(x-1\right)}{15\left(x-1\right)^2\left(x+1\right)}=\dfrac{x}{3\left(x-1\right)}\)\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)

3 tháng 12 2017

\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x^2+x}{5x^2-10x+5}.\dfrac{5x-5}{3x+3}\)

\(=\dfrac{\left(x^2+x\right)\left(5x-5\right)}{\left(5x^2-10x+5\right)\left(3x+3\right)}\)

\(=\dfrac{x\left(x+1\right)5\left(x-1\right)}{5\left(x^2-2x+1\right)3\left(x+1\right)}\)

\(=\dfrac{5x\left(x+1\right)\left(x-1\right)}{15\left(x-1\right)^2\left(x+1\right)}\)

\(=\dfrac{x}{3\left(x-1\right)}\)

21 tháng 4 2017

Giải bài 43 trang 54 Toán 8 Tập 1 | Giải bài tập Toán 8

14 tháng 12 2018

a) \(\dfrac{2}{3x+9}-\dfrac{x-3}{3x^2+9x}\)

\(=\dfrac{2}{3\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x}{3x\left(x+3\right)}-\dfrac{x-3}{3x\left(x+3\right)}\)

\(=\dfrac{2x-x+3}{3x\left(x+3\right)}\)

\(=\dfrac{x+3}{3x\left(x+3\right)}\)

\(=\dfrac{1}{3x}\)

b) \(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}:\dfrac{3\left(x+1\right)}{5\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)

\(=\dfrac{x}{\left(x-1\right).3}\)

\(=\dfrac{x}{3x-3}\)

c) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+99}-\dfrac{1}{x+100}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+100}\)

\(=\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

\(=\dfrac{x+100-x}{x\left(x+100\right)}\)

\(=\dfrac{100}{x\left(x+100\right)}\)

a: \(=\dfrac{3x}{5\left(x+y\right)}-\dfrac{x}{10\left(x-y\right)}\)

\(=\dfrac{6x\left(x-y\right)-x\left(x+y\right)}{10\left(x-y\right)\cdot\left(x+y\right)}\)

\(=\dfrac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}=\dfrac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

b: \(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)

\(=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{7x+4x-6-2x^2-3x}{2x\left(2x+3\right)\left(2x-3\right)}\)

\(=\dfrac{-2x^2-6}{2x\left(2x+3\right)\left(2x-3\right)}=\dfrac{-x^2-3}{x\left(2x+3\right)\left(2x-3\right)}\)

c: \(=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

28 tháng 6 2017

Phép trừ các phân thức đại số

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

25 tháng 11 2022

a: \(=\dfrac{1}{x+2y}+\dfrac{1}{x-2y}-\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x-2y+x+2y-4y}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2}{x+2y}\)

b: \(=\dfrac{2x}{x-1}+\dfrac{5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}\cdot\dfrac{2\left(x+1\right)}{5\left(1-x\right)}\)

\(=\dfrac{2x}{x-1}-2=\dfrac{2x-2x+2}{x-1}=\dfrac{2}{x-1}\)

c: \(=\dfrac{5\left(x-1\right)}{2x}\cdot\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{5\cdot4x}{2x\cdot\left(x+1\right)}=\dfrac{10}{x+1}\)