K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

1 tháng 7 2017

Gọi thương trong phét chia của P(x) cho x - 2 và x - 3 lần lượt là Q(x) , G(x) 

Ta có : P(x) = (x - 2).Q(x) + 5 với mọi x (1)

           P(x) = (x - 3).G(x) + 7 với mọi x (2)

Khi chia đa thức P(x) cho đa thức bậc hai (x - 2)(x - 3) thì số dư chỉ có thể có rạng R(x) = ax + b

Ta có : P(x) = (x - 2)(x - 3).h(x) + ax + b với mọi x (3)

Thay x = 2 vào (1) ta có : P(2) = 5 , thay vào 3 ta có : P(2) = 2a + b 

Nên 2a + b = 5 (4)

Thay x = 3 vào (2) ta có : P(3) =  7 , thay vào (3) ta có : P(3) = 3a + b 

Nên 3a + b = 7 (5)

Từ (4) và (5) => 3a + b - (2a + b) = 7 - 5 

=> a = 2 => b = 5 - 2.2 = 1

Vậy số dư khi chia P(x) cho (x - 2)(x - 3) là : 2x + 1 

29 tháng 12 2017

Theo đk (1) ta có: P(x) = (x - 2).M(x) + 5 => P(2) = 5 
Theo đk (2) ta có: P(x) = (x - 3).N(x) + 5 => P(3) = 7 
Theo đk (3) ta có: P(x) = (x - 2)(x - 3).Q(x) + ax + b 
(Với M(x); N(x); Q(x) là các đa thức thương và ax + b là số dư cần tìm trong phép chia P(x) cho (x - 2)(x - 3)) 
Từ (1) và (3) ta có P(2) = 5 => 2a + b = 5 
Từ (2) và (3) ta có P(3) = 7 => 3a + b = 7 
Trừ từng vế 2 thằng trên ta có: a = 2; b = 1 
Vậy đa thức dư cần tìm là: 2x + 1

29 tháng 12 2017

zập hông?

đố bít ai?

15 tháng 1 2021

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

15 tháng 1 2021

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1 

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)