K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Theo đề bài ta có:

f(x) = x + x3 + x9 + x27 + x81 + x243 = Q(x).(x2 - 1) + ax + b

Thế f(1), f(-1) ta có hệ:

\(\hept{\begin{cases}a+b=6\\-a+b=-6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=6\\b=0\end{cases}}\)

Vậy a + b = 6

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)

NV
5 tháng 2 2020

\(P\left(x\right)=\left(x^2+2\right)\left(x^2-2x+5\right)+\left(a+4\right)x+b-12\)

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+4=0\\b-12=0\end{matrix}\right.\)

6 tháng 2 2020

P(x)=(x2+2)(x^2−2x+5)+(a+4)x+b−12(a+4)

Để P(x)⋮Q(x)

⇔a+4=0 hoặc b-12=0

17 tháng 10 2017

Casio hả bạn

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến