Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khong co vi a+ b v aa - b cung tinh chan le
neu chung cung le thi [a + b]. [ a -b] le
neu chung cung chan thi [a + b ] . [ a - b] chia het cho 4 , ma 2002 ko chia het cho 4
suy ra dpcm
(A + B) x (A - B)=2002
(A + B) x A - (A + B) x B=2002
A x A+B x A - A x B - B x B=2002
A x A - B x B=2002
Vì 2002 không có dạng A x A-B x B nên không thể tìm được A và B thỏa mãn
Không có vì a+b và a-b luôn cùng chẵn hoặc cùng lẻ:
Nếu cùng lẻ thì (a+b).(a-b)= số lẻ
Nếu cùng chẵn thì (a+b).(a-b) chia hết cho 4 mà 2002 không chia hết cho 4
=> Không có 2 số tự nhiên a và b thỏa mãn điều kiện bài
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)
tổng trên ko bằng 1 vì :
\(\frac{1}{a}=\frac{1.b.c.d}{a.b.c.d}\)
\(\frac{1}{b}=\frac{1.a.c.d}{b.a.c.d}\)
\(\frac{1}{c}=\frac{1.a.b.d}{c.a.b.d}\)
\(\frac{1}{d}=\frac{1.a.b.c}{a.b.c.d}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{b.c.d}{a.b.c.d}+\frac{a.c.d}{b.a.c.d}+\frac{a.b.d}{c.a.b.d}+\frac{a.b.c}{a.b.c.d}\)
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
bài 1:
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 ( có 2002 thừa số 2004)
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 ( vì 6 x 4 = 24)
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) =( 2003 x 2003 x 2003 x 2003) x x (2003 x 2003 x 2003 x 2003 ). vì 2004 : 4 = 501 (nhóm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). vậy tận cùng của A + B là 4 + 1 = 5. do đó A + B chia hết cho 5
Không hoặc có
Vì thì k bt