Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có 4 cách chọn chữ số hàng đơn vị
6 cách chọn chữ số hàng nghìn
7 cách chọn chữ số hàng trăm
7 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: Có 4.6.7.7 = 1176 (số)
b. TH1: Chọn các số chẵn có chữ số hàng đơn vị bằng 0
⇒ Có 6 cách chọn chữ số hàng nghìn
5 cách chọn chữ số hàng trăm
4 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: có 6.5.4 = 120 (số)
TH2: Chọn các số chẵn có chữ số hàng đơn vị khác 0.
⇒ Có 3 cách chọn chữ số hàng đơn vị
Có 5 cách chọn chữ số hàng nghìn (khác 0 và khác hàng đơn vị)
Có 5 cách chọn chữ số hàng trăm
Có 4 cách chọn chữ số hàng chục
⇒ Theo quy tắc nhân: Có 3.5.5.4 = 300 (số)
⇒ Theo quy tắc cộng: Có tất cả 120 + 300 = 420 số chẵn thỏa mãn.
Tập hợp A = {0, 1, 2, 3, 4, 5, 6}
a) Gọi số có 4 chữ số tạo thành là \(\overline{abcd}\)
Ta có: \(\overline{abcd}\) chẵn nên:
Số \(\overline{abcd}\left\{{}\begin{matrix}a,b,c,d\in A\\a\ne0\\d\in\left\{0;2;4;6\right\}\end{matrix}\right.\)
_ Có 4 cách để chọn d
_ a ≠ 0 ⇒ có 6 cách chọn a
_ có 7 cách chọn b và 7 cách chọn c
Vậy : 4.6.7.7 = 1176 số chẵn \(\overline{abcd}\) trong đó, các chữ số có thể giống nhau
b) Gọi \(\overline{abcd}\) là số cần tìm
Trường hợp 1: \(\overline{abc0}\left(d=0\right)\)
Vì a, b, c đôi một khác nhau và khác d nên có A63 số \(\overline{abc0}\)
Vậy có A63 số \(\overline{abc0}\)
Trường hợp 2: \(\overline{abcd}\) (với d ≠ 0)
_ d ∈ {2, 4, 6} ⇒ có 3 cách chọn d
_ a ≠ 0, a ≠ d nên có 5 cách chọn a
_ b ≠ a, b ≠ d nên có 5 cách chọn b
_ c ≠ a, b, d nên có 4 cách chọn c
⇒ Có 3. 5. 5. 4 = 300 số \(\overline{abcd}\) loại 2.
Vậy có: A63 + 300 = 420 số \(\overline{abcd}\) thỏa mãn yêu cầu của đề bài.
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
Chọn D
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng
a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})
Suy ra, số các số tự nhiên thỏa đề ra là
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.
Ta có,
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯ (a có thể bằng 0) là .
+ Số các tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ là
Suy ra, số các số tự nhiên thỏa đề ra là .
Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5
• Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7} ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm {0;2;4;6} ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a1 = 0
• Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7} ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm {0;2;4;6} ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 . 5 ! - C 4 2 . C 3 2 . 4 ! = 2448 số
Chọn A
Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.
Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng a b c d e ¯ (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})
+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng 0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là
(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b,c}).
Suy ra, số các số tự nhiên thỏa đề ra là
Tham khảo!
gọi số cần tìm là abcde, ta có:
+hàng đơn vị (e) vì là số chẵn nên có 4 cách chọn: 0;2;4;6
+ hàng chục(d) có 6 cách chọn
+ c =5; b=4; a =3
vậy có: 4.6.5.4.3 = 1440 số chẵn
thiếu bn ơi
ok mình sửa rồi