Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x-3\sqrt{5}\right)^2}+\sqrt{\left(y+3\sqrt{5}\right)^2}+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left|x-3\sqrt{5}\right|+\left|y+3\sqrt{5}\right|+\left|x+y+z\right|=0\)
\(\Leftrightarrow\begin{cases}x-3\sqrt{5}=0\\y+3\sqrt{5}=0\\x+y+z=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=3\sqrt{5}\\y=-3\sqrt{5}\\z=-x-y=-3\sqrt{5}+3\sqrt{5}=0\end{cases}\)
\(5\sqrt{x}-17=108\)
\(\Rightarrow5\sqrt{x}=17+108=125\)
\(\Rightarrow\sqrt{x}=25\)
\(\Rightarrow x=25^2=625\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
\(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)}+\left|x-y-z\right|=0\)
\(\Leftrightarrow\left|x-\sqrt{5}\right|+\left|y+\sqrt{3}\right|+\left|x-y-z\right|=0\)
Ta có \(\hept{\begin{cases}\left|x-\sqrt{5}\right|\ge0\\\left|y+\sqrt{3}\right|\ge0\\\left|x-y-z\right|\ge0\end{cases}}\)
=> \(VT\ge0\)
Dấu = xảy ra khi
\(\hept{\begin{cases}x-\sqrt{5}=0\\y+\sqrt{3}=0\\x-y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}\\y=-\sqrt{3}\\z=\sqrt{5}+\sqrt{3}\end{cases}}\)
\(\sqrt{x+5}=\sqrt{6x}\)
\(\Rightarrow\left(\sqrt{x+5}\right)^2=\left(\sqrt{6x}\right)^2\)
\(\Rightarrow x+5=6x\)
\(\Rightarrow5=6x-x\)
\(\Rightarrow5=5x\)
\(\Rightarrow x=1\)
Vậy \(\sqrt{x+5}=\sqrt{6x}\) có 1 nghiệm duy nhất là x=1