K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Lời giải:
Để $y$ xác định trên trên $(1;2)\cup [4;+\infty)$ thì:

\(\left\{\begin{matrix} x+m\geq 0\\ 2x-m+1\neq 0\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq x\\ m\neq 2x+1\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq 1\\ m\neq (3;5)\cup [9;+\infty)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -1\\ m\in (-\infty;3]\cup [5;9)\end{matrix}\right.\)

Vì $m$ nguyên dương nên $m\in\left\{1;2;3;5;6;7;8\right\}$

Tức là có 7 giá trị $m$ thỏa mãn.

NV
16 tháng 9 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-m\\x\ne\frac{m-1}{2}\end{matrix}\right.\)

Để hàm xác định trên khoảng đã cho

\(\Leftrightarrow\left\{{}\begin{matrix}-m\le1\\\left[{}\begin{matrix}\frac{m-1}{2}\le1\\2\le\frac{m-1}{2}< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge-1\\\left[{}\begin{matrix}m\le3\\5\le m< 9\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le m\le3\\5\le m< 9\end{matrix}\right.\)