Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn 4 người để xếp vào 4 ghế ở dãy đầu : có \(A_7^4\) cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : Có 3! cách
Vậy có tất cả \(A_7^4.3!=5040\) cách xếp
Đáp án A
Phương pháp :
+) Chọn vị trí cho các bạn nam (hoặc nữ).
+) Hoán đổi các vị trí.
+) Sử dụng quy tắc nhân.
Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4 = 2 4 cách chọn ghế cho 4 bạn nam.
4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp
Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.
Mỗi cách sắp xếp chỗ ngồi cho mười người vào mười ghế là một hoán vị của một tập hợp có 10 phần tử.
Vậy có P 10 = 10 ! = 3 . 628 . 800 cách sắp xếp.
Ω: "Xếp 10 người vào dãy ghế có 10 chỗ."
⇒ n(Ω) = 10!
A: "Lan không ngồi 2 đầu dãy ghế."
- Lan có 8 cách chọn chỗ.
- 9 người còn lại có 9! cách chọn chỗ.
⇒ n(A) = 8.9!
\(\Rightarrow P\left(A\right)=\dfrac{8.9!}{10!}=0,8\)
Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách
Xếp 6 học sinh trường B vào dãy còn lại: 6! cách
Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị
Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn
Số cách sắp xếp 10 người vào ghế sẽ là một hoán vị của 10:
\(10!=3628800\) (cách).
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
Chọn C
Số cách xếp 4 bạn học sinh vào dãy có 4 ghế là: 4! = 24 cách.
Chọn 4 người để xếp vào 4 ghế ở dãy đầu : Có cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : có 3! cách.
Vậy có tất cả cách xếp.