Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì trong 2 số liên tiếp luôn luôn có 1 số chắn.Mà mọi số chẵn đều luôn chia hết cho 2
=>tích 2 số liên tiếp chia hết cho 2
b)Vì trong 3 sô liên tiếp luôn có 1 số chia hết cho 3.
=>tích 3 sô liên tiếp luôn chia hết cho 3(1)
Từ câu a ta đã Cm đc tích 2 số liên tiếp luôn chia hết cho 2 hay tích 3 số liên tiếp cũng chia hết cho 2(2)
Mà(3;2)=1(3)
Từ (1), (2) và (3)
=>Tích 3 số liên tiếp luôn chia hết cho 2.3 =6
nhớ tick nha
a) Gọi 2 số tự nhiện liên tiếp là n; n+1
Ta có:
Nếu n có dạng 2k thì n.(n+1)
= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)
Nếu n có dạng 2k + 1 thì n.(n+1)
= (2k+1).(2k+1+1)
= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)
tick nhé
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???
mấy cái này chứng minh mần j nhỉ
cái này là vốn có để chưngs minh rồi
nếu chứng mnh thì cũng bằng thừa
a, Gọi 2 số tự nhiên liến tiếp là : a;a+1 (a thuộc N)
1 số khi chia cho 2 có dạng : 2k;2k+1 (k thuộc N)
+) Nếu a=2k => a chia hết cho 2 (1)
+) Nếu a=2k+1 => a+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2)
=> Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2.
Vậy trong 2 số tự nhiên liên tiếp, có 1 số chia hết cho 2.
b, Tương tự phần a
a)
gọi 3 số chẵn liên tiếp là 2x,4x,6x( x là số tự nhiên)
ta có 2x+4x+6x=12x chia hết cho 6
=> Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b)
gọi 3 số lẻ liên tiếp là 3k-1 , 3k , 3k+1( k là số tự nhiên)
ta có 3k-1+3k+3k+1=9k chia hết cho 3 nhưng không chia hết cho 2
=> Tổng ba số lẻ liên tiếp ko chia hết cho 6
c)
a chia hết cho b=> a=b.x(x là số tự nhiên)
b chia hết cho c=> b= c.y(y là số tự nhiên)
thay b=c.y, ta có a= c.y.x chia hết cho c
=> Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d)
a chia hết cho 7=> a = 7x ( x là số tự nhiên)
b chia hết cho 7=> b=7y(y là số tự nhiên)
a-b=7x7t=7(x-y) chia hết cho 7
=> Nếu a và b chia hết cho 7 có cùng số dư thì hiệu a - b chia hết cho 7
học tốt
a) Gọi 3 số chẵn liên tiếp lần lượt là 2n, 2n+2, 2n+4
Tổng của ba số chẵn liên tiếp là: 2n + 2n+2 + 2n+4
= 6n+6
= 6(n+1) chia hết cho 6
Vậy tổng của ba số chẵn liên tiếp thì chia hết cho 6
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
Liên tiếp cơ mà bạn :v
Hai số tự nhiên liên tiếp có dạng 2k và 2k + 2 ( với k ∈ N )
Tích của chúng = 2k( 2k + 2 ) = 4k2 + 4k = 4( k2 + k ) chia hết cho 2
=> đpcm
Sai rồi em ơi, bài làm đúng phải như vậy nhé:
G/s 2 số tự nhiên liên tiếp đó có dạng là k và k+1 với \(k\inℕ\)
+ Nếu k lẻ: => k+1 chẵn => k(k+1) chẵn => k(k+1) chia hết cho 2
+ Nếu k chẵn => k(k+1) chẵn => k(k+1) chia hết cho 2
=> k(k+1) luôn chia hết cho 2
=> Tích 2 STN liên tiếp luôn chia hết cho 2
=> đpcm
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
Gọi 3 số tự nhiên liên tiếp lần lượt là x , x + 1 , x + 2
Ta có : \(x+x+1+x+2=3x+3=3\left(x+1\right)⋮3\)
Gọi 4 số tự nhiên liên tiếp lần lượt là x , x + 1 , x + 2 , x + 3 , x + 4
Ta có \(x+x+1+x+2+x+3+x+4=4x+10\)
Vì \(4x⋮4\)
Mà 10 không chia hết cho 4
=> 4x+10 không chia hết cho 4