Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+ 9 \(⋮n-2\)
mà n - 2 \(⋮n-2\)
= n -2 +11 \(⋮n-2\)
=> 11 \(⋮n-2\)
n -2 \(\inư\left(11\right)\in1,11\)
Ta có bảng:
n-2 | 1 | 11 |
n | 3 | 13 |
Vậy x = 3; 13
\(n⋮n-2\\ \Rightarrow n-\left(n-2\right)⋮n-2\\ \Rightarrow2⋮n-2\\ \Rightarrow n-2\in\left\{1;2\right\}\\ \Rightarrow n\in\left\{3;4\right\}\)Vậy \(n\in\left\{3;4\right\}\)
\(n+7⋮n+1\\ \Rightarrow n+7-\left(n+1\right)⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow n\in\left\{0;1;2;5\right\}\)Vậy \(n\in\left\{0;1;2;5\right\}\)
\(21⋮2n+5\\ \Rightarrow2n+5\in\left\{1;3;7;21\right\}\\ \Rightarrow2n\in\left\{2;16\right\}\\ \Rightarrow n\in\left\{1;8\right\}\)Vậy \(n\in\left\{1;8\right\}\)
\(2n+7⋮2n+1\\ \Rightarrow2n+7-\left(2n+1\right)⋮2n+1\\ \Rightarrow6⋮2n+1\\ \Rightarrow2n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow2n\in\left\{0;1;2;5\right\}\\ \Rightarrow n\in\left\{0;1\right\}\)Vậy \(n\in\left\{0;1\right\}\)
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n
Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )
Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)
b, Ta có : \(168=2^3.3.7\)
- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )
\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\) (1)
- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 )
Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\) (2)
- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )
nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)
Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)
hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)
không biết làm