Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
xét tam giác ABC vuông tại cao có đường cao AH và đường trung tuyến AM
khi đó tam giác AHM là tam giác vuông tại H nên
ta có \(AH\le AM\text{ mà }AM=\frac{1}{2}BC\)
nên ta có
Mình có 2 cách bạn chọn cách nào cũng được nhé.
Cách 1: Giả sử tam giác ABC vuông tại A có đường cao AH . Khi đó, theo hệ thức lượng trong tam giác vuông, ta có:
\(AH^2=BH.CH\)\(\Rightarrow AH=\sqrt{BH.CH}\)
Mặt khác nửa cạnh huyền chính là \(\frac{BC}{2}=\frac{BH+CH}{2}\)
Theo BĐT Cô-si, ta có \(\sqrt{BH.CH}\le\frac{BH+CH}{2}\)hay \(AH\le\frac{BC}{2}\)
Dấu "=" xảy ra khi \(BH=CH\)\(\Rightarrow\)đường cao AH cũng là trung tuyến \(\Rightarrow\Delta ABC\)vuông cân tại A.
Cách 2: Giả sử tam giác ABC vuông tại A có đường cao AH, trung tuyến AM.
Ta ngay lập tức có được \(AM=\frac{BC}{2}\)
Vì AH, AM lần lượt là đường vuông góc và đường xiên hạ từ A đến BC \(\Rightarrow AH\le AM\)hay \(AH\le\frac{BC}{2}\)
Dấu "=" xảy ra khi \(AH\equiv AM\)hay \(\Delta ABC\)vuông cân tại A.