Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)
Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)
theo bất đẳng thức côsi ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )
\(\Leftrightarrow\) ĐPCM
Đặt A= abc(bc+a2)(ac+b2)(ab+c2)
Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0
<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0
<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0
<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0 (đúng với mọi a,b,c)
mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!
giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)
\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\) (vì b>0;c>0)
\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0) (1)
c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\) (2)
\(\frac{c+a}{ab+c^2}\le\frac{1}{b}\) (3)
từ (1),(2),(3)=>đpcm
viết thư gửi mẹ ở trên trời:
Hà Nội, ngày...tháng....năm.....
"Chắc ở nơi nào đó, mẹ cũng vui vì nhìn thấy con hạnh phúc và trưởng thành hơn. Cũng lâu lắm rồi, con không lên thắp hương cho mẹ, con thật có lỗi. Sống ở đây, con được ba lo cho rất đầy đủ, nhưng đôi khi con lại muốn cảm giác được mẹ chăm sóc khi còn nhỏ hơn, ước gì có thể quay ngược lại thời gian để con ngập tràn trong phút giây đó.
Con vẫn chưa nói 'Con yêu mẹ' được và đây là điều hối tiếc nhất trong cuộc đời con. Nhưng con biết mẹ sẽ hiểu được tấm lòng của con vì con ít khi thể hiện sự yêu thương bằng lời nói mà chỉ thể hiện bằng những thành quả mà con đạt được.
Mọi chuyện đều do định mệnh nên mẹ đừng buồn, cả nhà luôn yêu thương mẹ. Nếu có kiếp sau con muốn làm con của mẹ một lần nữa.
Yêu mẹ! Chúc mẹ luôn hạnh phúc ở phương xa".
Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\)
\(\Leftrightarrow\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{ac}}+\frac{2}{\sqrt{bc}}\)
\(\Leftrightarrow\frac{1}{a}-\frac{2}{\sqrt{ab}}+\frac{1}{b}+\frac{1}{a}-\frac{2}{\sqrt{ac}}+\frac{1}{c}+\frac{1}{b}-\frac{2}{\sqrt{bc}}+\frac{1}{c}\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{c}}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
phần vết ở chỗ nào đấy
là sao