K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Gọi ƯCLN của 3n+1 và 5n+2 là d(d thuộc N sao)

=> 3n+1 và 5n+2 đều chia hết cho d 

=> 2.(3n+1) và 5n+2 đều chia hết cho d 

=> 6n+2 và 5n+2 đều chia hết cho d

=> 6n+2-5n-2 chia hết cho d hay n chia hết cho d => 3n chia hết cho d

Mà 3n+1 chia hết cho d => 3n+1-3n chia hết cho d hay 1 chia hết cho d

=> d = 1 (vì d thuộc N sao)

=> 3n+1 và 5n+2 là 2 số nguyên tố cùng nhau (ĐPCM)

6 tháng 11 2017

Bn đưa về 15n rồi tính!

2 tháng 12 2017

Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)

\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)

\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

21 tháng 12 2015

Câu hỏi tương tự nhé bạn ! 
UCLN = 7 
Tick mình nha

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
Gọi $d=ƯCLN(3n,3n+1)$

$\Rightarrow 3n\vdots d; 3n+1\vdots d$

$\Rightarrow (3n+1)-3n\vdots d\Rightarrow 1\vdots d\Rightarrow d=1(1)$

Gọi $k=ƯCLN(3n, 5n+3)$

$\Rightarrow 3n\vdots k, 5n+3\vdots k$

$\Rightarrow 3(5n+3)-5.3n\vdots k\Rightarrow 9\vdots k$

$\Rightarrow k\in \left\{1; 3; 9\right\}$

Vậy $3n, 5n+3$ không có cơ sở để khẳng định là 2 số nguyên tố cùng nhau.

18 tháng 2 2017

Đặt (3n+4, 5n+1) = d

\(\Rightarrow\) \(\left\{\begin{matrix}3n+4⋮d\\5n+1⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{\begin{matrix}5\left(3n+4\right)⋮d\\3\left(5n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{\begin{matrix}15n+20⋮d\\15n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\) (15n+20) - (15n+3) \(⋮\) d

\(\Rightarrow\) 20 - 3 \(⋮\) d

\(\Rightarrow\) 17 \(⋮\) d

\(\Rightarrow\) d = \(\left\{1;17\right\}\)

Vì 3n+4 và 5n+1 không phải là hai số nguyên tố cùng nhau

\(\Rightarrow\) d \(\ne\) 1

\(\Rightarrow\) d = 17

Vậy (3n+4, 5n+1) = 17

15 tháng 11 2017

Gọi d là UCLN(5n+3;3n+2)

=> 5n+3\(⋮\)d <=> 15n+9\(⋮\)d

=> 3n+2\(⋮\)d<=> 15n+10 \(⋮\)d

=> 15n+10-15n-9\(⋮\)d<=>1\(⋮\)d=> d=1

d=1=> 5n+3 VÀ 3N+2  LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU

15 tháng 11 2017

Gọi UCLN(5n+3;3n+2) là d

Ta có

5n+3 chia hết cho d => 15n+9 chia hết cho d

3n+2 chia hết cho d=> 15n+10 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=> 15n+10-15n-9=1 chia hết cho d

=> d thuộc Ư(1)=> d=1

=> UCLN(5n+3;3n+2)=1=> 5n+3 và 3n+2 nguyên tố cùng nhau

20 tháng 11 2017

a) 2n + 5        3n + 7 

Gọi d là ƯCLN của 2n + 5 và 3n + 7      ( d e N* )

 Ta có : 2n + 5   \(⋮\) d      ( 1 )

            hay 3. ( 2n + 5 ) \(⋮\)d = 6n + 5  \(⋮\) d

            3n + 7  \(⋮\)d               ( 2 )

            hay  2.( 3n + 7 ) \(⋮\)d  =   6n + 7 \(⋮\)d

      Từ ( 1 ) và ( 2 ) suy ra ( 6n + 7 ) - ( 6n + 5 ) \(⋮\)d

                                          hay 2  \(⋮\)d   suy ra d = 1 và 2

  Suy ra ƯCLN ( 2n + 5 ; 3n + 7 ) = 1

            Vậy  hai số đó là số nguyên tố cùng nhau.

Câu còn lại bạn làm tương tự nhé

            

20 tháng 11 2017

a) 2n +5 và 3n+7

Đặt d=UCLN(2n+5;3n+7)

ta có: 2n+5 chia hết cho d=> 3(2n + 5)=6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d

=> (6n+15)-(6n+14)=1 chia hết cho d

=> d =1

vậy 2n+3 và 3n+7 là 2 số nguyên tố  cùng nhau

b) 5n +7 và 3n+4

Đặt d = UCLN(5n+7;3n+4)

ta có: 5n+7 chia hết cho d => 3(5n+7)=15n+21 chia hết cho d

3n+4 chia hết cho d =>5(3n+4)=15n+20 chia hết cho d

=> (15n+21) - (15n+20)=1 chia hết cho d

=>d=1

vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau