Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77
Vì AD là tia phân giác của HAB nên KD = DH
xét tam giác BDK và tam giác IDH
BKD = IHD = 90độ
KD = DH ( cmt )
BDK = IDH ( 2 góc đối đỉnh )
suy ra tam giác BDK = tam giác IDH ( g.c.g)
suy ra IH = KB ( 2 cạnh t.ư)
b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH
xét tam giác BIK và tam giác HKI
BK = IH ( câu a )
BKI = KIH ( cmt )
KI - cạnh chung
suy ra tam giác BIK = ta giác HKI ( c.g.c)
suy ra BIK = IKH ( 2 góc t.ư )
mà 2 góc này ở vị trí SLT nên HK//IB
c) vì KD vuông góc vs AK
AC vuông góc vs AK suy ra AC // KD ( quan hệ từ vuông góc đến song song )
suy ra KDA = DAC ( 2 góc SLT) ( 1 )
Xét tam giác KDA và tam giác HDA
DKA = DHA = 90độ
DA - cạnh huyền
KAD = DAH
suy ra tam giác KDA = tam giác HDA (c.h.g.n)
suy ra KDA= ADH (2 góc t.ư) (2)
từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)
suy ra tam giác DAC cân tại C
suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC
Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
Chứng minh A = 4n + 15n - 10 \(⋮\) 9 với mọi n ∈ N
Chứng minh bằng quy nạp:
Với n = 0 ⇒ A = -9 \(⋮\) 9
Với n = 1 ⇒ A = 9 \(⋮\) 9
Giả sử 4n + 15n - 10 \(⋮\) 9, ta chứng minh 4n+1 + 15(n + 1) - 10 cũng \(⋮\) 9
Ta có:
4n + 15n - 10 \(⋮\) 9
⇒ 4n + 5 \(⋮\) 3
⇒ 3.4n + 15 \(⋮\) 9
⇒ (3.4n + 15) + (4n + 15n - 10) \(⋮\) 9
⇒ 4n+1 + 15(n + 1) - 10 \(⋮\) 9
⇒ đpcm
~Study well~
#ARMY + BLINK#
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
a) \(16^7-2^{24}\)
\(=268435456-16777216\)
\(=251658240\)
Mà \(251658240\)chia hết cho 15
\(\Rightarrow16^7-2^{24}\)chia hết cho 15
b) \(7^{80}+7^{85}-7^{84}\)
\(=7^{84}\left(7^2+7-1\right)\)
\(=7^{84}\left(49+7-1\right)\)
\(=7^{84}\left(56-1\right)\)
\(=7^{84}.55\)
Mà 55 luôn luôn chia hết cho 55
\(\Rightarrow7^{80}+7^{85}-7^{84}\)chia hết cho 55
c) \(16^5+2^{15}\)
\(16^5=2^{20}\)
\(\Rightarrow16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33\)
Mà 33 luôn luôn chia hết cho 33
\(\Rightarrow16^5+2^{15}\)chia hết cho 33